Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic sy...Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.展开更多
Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step t...Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step to a complete step-by-step integration procedure. It is analytically proven that ensuring stability conditions in each time step leads to a stable computation of the entire step-by-step integration procedure. The other extension shows that the nonlinear error propagation results, which are derived for a nonlinear single degree of freedom (SDOF) system, can be applied to a nonlinear multiple degree of freedom (MDOF) system. This application is dependent upon the determination of the natural frequencies of the system in each time step, since all the numerical properties and error propagation properties in the time step are closely related to these frequencies. The results are derived from the step degree of nonlinearity. An instantaneous degree of nonlinearity is introduced to replace the step degree of nonlinearity and is shown to be easier to use in practice. The extensions can be also applied to the results derived from a SDOF system based on the instantaneous degree of nonlinearity, and hence a time step might be appropriately chosen to perform a pseudodynamic test prior to testing.展开更多
基金Science Council,Chinese Taipei,Under Grant No. NSC-96-2211-E-027-030
文摘Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.
基金NSC, Chinese Taipei Under Grant No. NSC-97-2221-E-027-036-MY2
文摘Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step to a complete step-by-step integration procedure. It is analytically proven that ensuring stability conditions in each time step leads to a stable computation of the entire step-by-step integration procedure. The other extension shows that the nonlinear error propagation results, which are derived for a nonlinear single degree of freedom (SDOF) system, can be applied to a nonlinear multiple degree of freedom (MDOF) system. This application is dependent upon the determination of the natural frequencies of the system in each time step, since all the numerical properties and error propagation properties in the time step are closely related to these frequencies. The results are derived from the step degree of nonlinearity. An instantaneous degree of nonlinearity is introduced to replace the step degree of nonlinearity and is shown to be easier to use in practice. The extensions can be also applied to the results derived from a SDOF system based on the instantaneous degree of nonlinearity, and hence a time step might be appropriately chosen to perform a pseudodynamic test prior to testing.