期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
数值型敏感属性的近邻泄露保护方法研究
1
作者 陈伟鹤 屈洪雪 邱道龙 《计算机应用研究》 CSCD 北大核心 2012年第2期650-654,657,共6页
针对在发布数值型敏感属性数据时,因同一分组中个体的敏感属性值之间过小的差异而导致攻击者可以较高的概率以及较小的误差推导出目标个体的敏感信息,从而出现近邻泄露问题,提出了一种有效的防止近邻泄露的模型:(εp,l)-anonymity。该... 针对在发布数值型敏感属性数据时,因同一分组中个体的敏感属性值之间过小的差异而导致攻击者可以较高的概率以及较小的误差推导出目标个体的敏感信息,从而出现近邻泄露问题,提出了一种有效的防止近邻泄露的模型:(εp,l)-anonymity。该模型根据不同的敏感属性值区间设置不同的阈值εi(1≤i≤p)控制敏感属性值之间的相似度,并采用有损链接的方法对隐私数据进行保护。实验结果表明,该方法可以明显减少近邻泄露,提高信息可用性,增强数据发布的安全性。 展开更多
关键词 数据发布 数值型 有损连接 可用性 近邻泄露 (εp l)-anonymity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部