This paper presents an experimental investigation on the effect of protrusion radial position and height on the sealing performance and flow structure in the rotor-stator cavity. The rotormounted protrusions are assem...This paper presents an experimental investigation on the effect of protrusion radial position and height on the sealing performance and flow structure in the rotor-stator cavity. The rotormounted protrusions are assembled at three radial positions and are set to three heights. The cavity is equipped with three rim seals: a radial seal, an axial seal and a seal with double fins on the stator.The annulus Reynolds number is set at 4:39 ×10;and the rotational Reynolds number ranges from 7:51×10;to 1:20×10;. Heat and mass transfer analogy is applied. Pressure and CO;concentration are measured. The experimental results show that in cavities with different rim seals, radial distributions of the sealing efficiency, pressure and swirl ratio are basically the same. The sealing performance is improved by protrusions compared with the cavity without protrusion and improves with the increase of protrusion radial position and height. The effect of protrusion increases with the increase of the rotational Reynolds number. The windage loss and the flow resistance introduced by protrusions are investigated. It is found that induced windage loss and flow resistance decrease with the increase of protrusion radial position but increase with the protrusion height.展开更多
It is commonly known that riblets with sharper tip generally have better turbulent drag reduction capacity,which,however,poses great challenges for manufacturing and makes the riblets vulnerable to tip erosion.In this...It is commonly known that riblets with sharper tip generally have better turbulent drag reduction capacity,which,however,poses great challenges for manufacturing and makes the riblets vulnerable to tip erosion.In this study,we show that a scalloped riblet which is not as sharp in the tip as corresponding triangular riblet with same height-width ratio,nevertheless has a larger protrusion height,a quantity solely depending on the riblet shape and calculated through a boundary element algorithm in this study,and thus a higher projected drag reduction rate.In addition,it is found that,when subjected to tip rounding,this scalloped riblet performs better in terms of protrusion height than corresponding parabolic riblet,which indicates stronger resilience to riblet tip erosion.With the class of scalloped riblets,designed by smoothly connecting two third-order polynomials and thus the tip sharpness and valley curvature can be well defined,it is revealed that two mechanisms,one for the valley curvature at the viscous limit and one for the tip sharpness at infinite deep limit,determine the protrusion height,and thus the projected drag reduction capacity.Direct numerical simulations are then carried out to investigate controlled boundary layer transition with the scalloped riblet of width s+=20 and 5+=60.A 7.8%drag reduction in the turbulent region is found for the smaller riblet with a preferable transition delay,while for the larger riblet transition is promoted and drag is increased in the turbulent region.It is also found that the area fraction of high drag region around the riblet tips is basically the same for the two cases.Surprisingly,even higher drag is found around the tip region for the smaller drag-reducing riblets.On the other hand,a much smaller drag coefficient is found in the valley of the smaller riblet,which results in the reduction of turbulent drag.It is thus inferred that the issue of sharp riblet tip,that hard to manufacture and deteriorate substantially when subjected to tip erosion,could be mitigated展开更多
文摘This paper presents an experimental investigation on the effect of protrusion radial position and height on the sealing performance and flow structure in the rotor-stator cavity. The rotormounted protrusions are assembled at three radial positions and are set to three heights. The cavity is equipped with three rim seals: a radial seal, an axial seal and a seal with double fins on the stator.The annulus Reynolds number is set at 4:39 ×10;and the rotational Reynolds number ranges from 7:51×10;to 1:20×10;. Heat and mass transfer analogy is applied. Pressure and CO;concentration are measured. The experimental results show that in cavities with different rim seals, radial distributions of the sealing efficiency, pressure and swirl ratio are basically the same. The sealing performance is improved by protrusions compared with the cavity without protrusion and improves with the increase of protrusion radial position and height. The effect of protrusion increases with the increase of the rotational Reynolds number. The windage loss and the flow resistance introduced by protrusions are investigated. It is found that induced windage loss and flow resistance decrease with the increase of protrusion radial position but increase with the protrusion height.
基金the National Natural Science Foundation of China(Grant No.11702159)the EU-China Joint Project Drag Reduction via Turbulent Boundary Layer Flow Control(Grant No.690623).
文摘It is commonly known that riblets with sharper tip generally have better turbulent drag reduction capacity,which,however,poses great challenges for manufacturing and makes the riblets vulnerable to tip erosion.In this study,we show that a scalloped riblet which is not as sharp in the tip as corresponding triangular riblet with same height-width ratio,nevertheless has a larger protrusion height,a quantity solely depending on the riblet shape and calculated through a boundary element algorithm in this study,and thus a higher projected drag reduction rate.In addition,it is found that,when subjected to tip rounding,this scalloped riblet performs better in terms of protrusion height than corresponding parabolic riblet,which indicates stronger resilience to riblet tip erosion.With the class of scalloped riblets,designed by smoothly connecting two third-order polynomials and thus the tip sharpness and valley curvature can be well defined,it is revealed that two mechanisms,one for the valley curvature at the viscous limit and one for the tip sharpness at infinite deep limit,determine the protrusion height,and thus the projected drag reduction capacity.Direct numerical simulations are then carried out to investigate controlled boundary layer transition with the scalloped riblet of width s+=20 and 5+=60.A 7.8%drag reduction in the turbulent region is found for the smaller riblet with a preferable transition delay,while for the larger riblet transition is promoted and drag is increased in the turbulent region.It is also found that the area fraction of high drag region around the riblet tips is basically the same for the two cases.Surprisingly,even higher drag is found around the tip region for the smaller drag-reducing riblets.On the other hand,a much smaller drag coefficient is found in the valley of the smaller riblet,which results in the reduction of turbulent drag.It is thus inferred that the issue of sharp riblet tip,that hard to manufacture and deteriorate substantially when subjected to tip erosion,could be mitigated