研究全钒液流电池的质子传导膜制备过程,提出高分子亲水/疏水相互作用诱导溶液相分离的成膜原理,进行制膜工艺放大,满足全钒液流电池的电堆制造与储能工程应用需要.突破现有"离子交换"传质机理的限制,利用电解液中不同价态钒离子与氢...研究全钒液流电池的质子传导膜制备过程,提出高分子亲水/疏水相互作用诱导溶液相分离的成膜原理,进行制膜工艺放大,满足全钒液流电池的电堆制造与储能工程应用需要.突破现有"离子交换"传质机理的限制,利用电解液中不同价态钒离子与氢离子相比,存在体积和荷电量的差异,通过离子"筛分"和"静电排斥"效应进行离子选择性渗透.制成孔径分布在4~7 nm的聚偏氟乙烯质子传导膜,电导率为3.5×10-2S·cm-1,爆破强度高于0.3 MPa,面积800 mm×900 mm.利用扩散实验测定膜对H+/VO2+离子选择性,选择性系数达到306.利用该质子传导膜组装的15 k W电堆,充电/放电循环性能稳定,电流密度达到100 m A·cm-2,在700多个循环过程电流效率为93%,能量效率超过72%,具备产业化应用前景.展开更多
Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interest...Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interesting materials for proton exchange membranes in fuel cells. Thus a considerable attention has been paid to the development of block copolymer polyelectrolyte membranes. In this study, the microdomains in block copolymer polyelectrolytes were controlled by external electric fields to develop high performance membranes with improved proton conductivity. The microdomain alignments in sulfonated polystyrene-b-hydrogenated poly butadiene-b-polystyrene block copolymer electrolyte were monitored by cross-sectional transmission electron microscopy analysis. The proton conductivities of the block copolymer electrolyte membranes were measured before and after exposure to electric field. In addition, the morphological features of the block copolymer electrolyte were observed with small angle x-ray scattering and atomic force microscopy.展开更多
The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposite...The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.展开更多
文摘研究全钒液流电池的质子传导膜制备过程,提出高分子亲水/疏水相互作用诱导溶液相分离的成膜原理,进行制膜工艺放大,满足全钒液流电池的电堆制造与储能工程应用需要.突破现有"离子交换"传质机理的限制,利用电解液中不同价态钒离子与氢离子相比,存在体积和荷电量的差异,通过离子"筛分"和"静电排斥"效应进行离子选择性渗透.制成孔径分布在4~7 nm的聚偏氟乙烯质子传导膜,电导率为3.5×10-2S·cm-1,爆破强度高于0.3 MPa,面积800 mm×900 mm.利用扩散实验测定膜对H+/VO2+离子选择性,选择性系数达到306.利用该质子传导膜组装的15 k W电堆,充电/放电循环性能稳定,电流密度达到100 m A·cm-2,在700多个循环过程电流效率为93%,能量效率超过72%,具备产业化应用前景.
文摘Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interesting materials for proton exchange membranes in fuel cells. Thus a considerable attention has been paid to the development of block copolymer polyelectrolyte membranes. In this study, the microdomains in block copolymer polyelectrolytes were controlled by external electric fields to develop high performance membranes with improved proton conductivity. The microdomain alignments in sulfonated polystyrene-b-hydrogenated poly butadiene-b-polystyrene block copolymer electrolyte were monitored by cross-sectional transmission electron microscopy analysis. The proton conductivities of the block copolymer electrolyte membranes were measured before and after exposure to electric field. In addition, the morphological features of the block copolymer electrolyte were observed with small angle x-ray scattering and atomic force microscopy.
基金Supported by the National Natural Science Foundation of China(Nos.20704004, 21074019)the Natural Science Foundation of Jilin Province, China(No.20101539)
文摘The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.