In this study, we report a spindle-like micromotor. This device, which is fabricated using a one-step electrospinning method, consists of biodegradable polycaprolactone and an anionic surfactant. Intriguingly, not onl...In this study, we report a spindle-like micromotor. This device, which is fabricated using a one-step electrospinning method, consists of biodegradable polycaprolactone and an anionic surfactant. Intriguingly, not only can the resulting micromotor move autonomously on the surface of water for a long period of time (-40 min) due to the Marangoni effect, but it also exhibits a pH sensing behavior due to variations in the surface tension caused by the release of surfactant under different pH conditions. More interestingly, we reveal that the motion-based pH sensing property is size-dependent, with smaller structures exhibiting a higher sensitivity. In addition, since polycaprolactone is a biode- gradable material, the micromotor described in this study can be easily degraded in solution. Hence, features such as one-step fabrication, motion readout, and biodegradability render this micromotor an attractive candidate for sensing algplications.展开更多
This paper analyses the automatic adjusting of the aim angle because of self-propelledgun’s platform sloping with ground plane caused by self-propelled gun movement, sets up adjustingmethod and model, and presents th...This paper analyses the automatic adjusting of the aim angle because of self-propelledgun’s platform sloping with ground plane caused by self-propelled gun movement, sets up adjustingmethod and model, and presents the corresponding algorithm.展开更多
基金Acknowledgements This work is supported by the National Natural Science Foundation of China (Nos. 21574094 and 21304064), the Natural Science Foundation of Jiangsu Province (Nos. BK20130292 and BK20150314), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions and the projectsponsored by the Scientific Research Foundation for the returned overseas Chinese scholars, State Education Ministry.
文摘In this study, we report a spindle-like micromotor. This device, which is fabricated using a one-step electrospinning method, consists of biodegradable polycaprolactone and an anionic surfactant. Intriguingly, not only can the resulting micromotor move autonomously on the surface of water for a long period of time (-40 min) due to the Marangoni effect, but it also exhibits a pH sensing behavior due to variations in the surface tension caused by the release of surfactant under different pH conditions. More interestingly, we reveal that the motion-based pH sensing property is size-dependent, with smaller structures exhibiting a higher sensitivity. In addition, since polycaprolactone is a biode- gradable material, the micromotor described in this study can be easily degraded in solution. Hence, features such as one-step fabrication, motion readout, and biodegradability render this micromotor an attractive candidate for sensing algplications.
文摘This paper analyses the automatic adjusting of the aim angle because of self-propelledgun’s platform sloping with ground plane caused by self-propelled gun movement, sets up adjustingmethod and model, and presents the corresponding algorithm.