It is demonstrated that offshore wavenumbers of edge waves change from imaginary wavenumbers in deep water to real wavenumbers in shallow water. This finding indicates that edge waves in the offshore direction exist a...It is demonstrated that offshore wavenumbers of edge waves change from imaginary wavenumbers in deep water to real wavenumbers in shallow water. This finding indicates that edge waves in the offshore direction exist as evanescent waves in deep water and as propagating waves in shallow water. Since evanescent waves can stably exist in a limited region while propagating waves cannot, energy should be released from nearshore regions. In the present study, the instability region is predicted based on both the full water wave solution and the shallow-water wave approximation.展开更多
The physical processes involved in the formation of the ENSO cycle,as well as the possible roles of the Hadley circulation (HC),Walker circulation (WC),and the propagating waves of the Southern Oscillation/Norther...The physical processes involved in the formation of the ENSO cycle,as well as the possible roles of the Hadley circulation (HC),Walker circulation (WC),and the propagating waves of the Southern Oscillation/Northern Oscillation (SO/NO) in its formation,were studied using composite and regression methods.The analysis showed that the convection and heat release triggered by ENSO in the central-eastern equatorial Pacific are the primary drivers for the 3-5 year cycle of the HC,WC and the meridional/zonal circulation.The HC plays a key role in the influence of ENSO on the circulation outside the tropics through angular momentum transportation.Meanwhile,the feedback effects of the anomalous circulation in the mid-high latitudes on ENSO are accomplished by the propagating waves of SO/NO associated with the evolutions of HC and WC.These propagating waves are the main agents of the connections among the meridional/zonal circulation outside the tropics,the Asian/Australian monsoon,the anomalous easterly/westerly winds over the tropical Pacific,and ENSO events.It was found that the 3-5 year cycle of the meridional/zonal circulation forced by ENSO is quite different from the several-week variation of the circulation index triggered by the inner dynamic processes of the atmosphere.The former occurs at the global scale with a definite flow pattern,while the latter occurs only in a wide area without a definite flow pattern.Finally,a physical model for the formation of the ENSO cycle composed of two fundamental processes at the basin and global scale,respectively,is proposed.展开更多
The purpose of this work is to identify the universality class of the nonequilibrium phase transition in the two-dimensional kinetic Ising ferromagnet driven by propagating magnetic field wave. To address this issue, ...The purpose of this work is to identify the universality class of the nonequilibrium phase transition in the two-dimensional kinetic Ising ferromagnet driven by propagating magnetic field wave. To address this issue, the finite size analysis of the nonequilibrium phase transition, in two-dimensional Ising ferromagnet driven by plane propagating magnetic wave, is studied by Monte Carlo simulation. It is observed that the system undergoes a nonequilibrium dynamic phase transition from a high temperature dynamically symmetric (propagating) phase to a low temperature dynamically symmetry-broken (pinned) phase as the system is cooled below the transition temperature. This transition temperature is determined precisely by studying the fourth-order Binder Cumulant of the dynamic order parameter as a function of temperature for different system sizes (L). From the finite size analysis of dynamic order parameter ?and the dynamic susceptibility , we have estimated the critical exponents and ?(measured from the data read at the critical temperature obtained from Binder cumulant), and (measured from the peak positions of dynamic susceptibility). Our results indicate that such driven Ising ferromagnet belongs to the same universality class of the two-dimensional equilibrium Ising ferromagnet (where and ), within the limits of statistical errors.展开更多
Convection in a horizontal fluid layer heated from below is one of models for studying patterns of convection in binary fluid mixtures and has been extensively studied. In this article, the convection structures in a ...Convection in a horizontal fluid layer heated from below is one of models for studying patterns of convection in binary fluid mixtures and has been extensively studied. In this article, the convection structures in a rectangular cell were investigated for the aspect-ratio Г= 12 and the separation ratio ψ = -0.47. Simulations were preformed by solving the hydrodynamic equations using the SIMPLE method. A Counter Propagating Wave (CPW) state was found in binary fluid convection with a periodically horizontal motion of defects, and the pattern dynamics was further discuss.展开更多
This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in o...This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in our previous paper 'Steady-state response of the wave propagation in a magneto-electro-elastic square column' published in CME, the dynamical behavior of MEESC was studied in this paper. The unlimited column is an open system. The transientstate response in the open system subjected by arbitrary external fields was derived when the propagating wave pursuing method was introduced.展开更多
We study the two-dimensional above-barrier penetration and the sub-barrier tunneling of non-relativistic particles and photons, described in the quasi-monochromatic approximation by simple plane waves. Our scheme repr...We study the two-dimensional above-barrier penetration and the sub-barrier tunneling of non-relativistic particles and photons, described in the quasi-monochromatic approximation by simple plane waves. Our scheme represents the motion from the left free-motion zero-potential region to the right zero-potential region through the intermediate region with a one-dimensional rectangular potential barrier along the axis, normal to the both parallel interfaces between all three regions, and with the zero potential along the axis, parallel to the those interfaces. We have firstly obtained the analytical expressions for the infinite series of multiple internal and external reflections and also of multiple transmitted waves of particles and photons, with equal shifts between them along the interfaces for the above-barrier penetration and with various shifts between them in the case of the sub-barrier tunneling. Finally the Hartman and Fletcher effect for any transmitted wave is established.展开更多
The dynamical response of spin-S(S=1, 3/2, 2, 3) Ising ferromagnet to the plane propagating wave, standing magnetic field wave and uniformly oscillating field with constant frequency are studied separately in two dime...The dynamical response of spin-S(S=1, 3/2, 2, 3) Ising ferromagnet to the plane propagating wave, standing magnetic field wave and uniformly oscillating field with constant frequency are studied separately in two dimensions by extensive Monte Carlo simulation. Depending upon the strength of the magnetic field and the value of the spin state of the Ising spin lattice two different dynamical phases are observed. For a fixed value of S and the amplitude of the propagating magnetic field wave the system undergoes a dynamical phase transition from propagating phase to pinned phase as the temperature of the system is cooled down. Similarly in case with standing magnetic wave the system undergoes dynamical phase transition from high temperature phase where spins oscillate coherently in alternate bands of half wavelength of the standing magnetic wave to the low temperature pinned or spin frozen phase. For a fixed value of the amplitude of magnetic field oscillation the transition temperature is observed to decrease to a limiting value as the value of spin S is increased. The time averaged magnetisation over a full cycle of the magnetic field oscillation plays the role of the dynamic order parameter. A comprehensive phase boundary is drawn in the plane of magnetic field amplitude and dynamic transition temperature. It is found that the phase boundary shrinks inwards for high value of spin state S.Also in the low temperature(and high field) region the phase boundaries are closely spaced.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 51209081)China Postdoctoral Science Foundation (Grant No. 2012M511191)+3 种基金the Qinglan Project and 333 Project of Jiangsu Province (Grant No. BRA2012130)the National Key Basic Research Development Program of China (973 Program, Grant No. 2010CB429002)the 111 Project (Grant No. B12032)the Basic Research Funds for the Central Universities (Hohai University 2012B06514)
文摘It is demonstrated that offshore wavenumbers of edge waves change from imaginary wavenumbers in deep water to real wavenumbers in shallow water. This finding indicates that edge waves in the offshore direction exist as evanescent waves in deep water and as propagating waves in shallow water. Since evanescent waves can stably exist in a limited region while propagating waves cannot, energy should be released from nearshore regions. In the present study, the instability region is predicted based on both the full water wave solution and the shallow-water wave approximation.
基金supported by the National Natural Science Foundation of China (Grant No.41375055)the National Basic Research Program of China (Grant No.2012CB957804)+1 种基金the Key Technologies R&D Program (Grant No.2009BAC51B02)the State Grid Science & Technology Project (GC71-13-007)
文摘The physical processes involved in the formation of the ENSO cycle,as well as the possible roles of the Hadley circulation (HC),Walker circulation (WC),and the propagating waves of the Southern Oscillation/Northern Oscillation (SO/NO) in its formation,were studied using composite and regression methods.The analysis showed that the convection and heat release triggered by ENSO in the central-eastern equatorial Pacific are the primary drivers for the 3-5 year cycle of the HC,WC and the meridional/zonal circulation.The HC plays a key role in the influence of ENSO on the circulation outside the tropics through angular momentum transportation.Meanwhile,the feedback effects of the anomalous circulation in the mid-high latitudes on ENSO are accomplished by the propagating waves of SO/NO associated with the evolutions of HC and WC.These propagating waves are the main agents of the connections among the meridional/zonal circulation outside the tropics,the Asian/Australian monsoon,the anomalous easterly/westerly winds over the tropical Pacific,and ENSO events.It was found that the 3-5 year cycle of the meridional/zonal circulation forced by ENSO is quite different from the several-week variation of the circulation index triggered by the inner dynamic processes of the atmosphere.The former occurs at the global scale with a definite flow pattern,while the latter occurs only in a wide area without a definite flow pattern.Finally,a physical model for the formation of the ENSO cycle composed of two fundamental processes at the basin and global scale,respectively,is proposed.
文摘The purpose of this work is to identify the universality class of the nonequilibrium phase transition in the two-dimensional kinetic Ising ferromagnet driven by propagating magnetic field wave. To address this issue, the finite size analysis of the nonequilibrium phase transition, in two-dimensional Ising ferromagnet driven by plane propagating magnetic wave, is studied by Monte Carlo simulation. It is observed that the system undergoes a nonequilibrium dynamic phase transition from a high temperature dynamically symmetric (propagating) phase to a low temperature dynamically symmetry-broken (pinned) phase as the system is cooled below the transition temperature. This transition temperature is determined precisely by studying the fourth-order Binder Cumulant of the dynamic order parameter as a function of temperature for different system sizes (L). From the finite size analysis of dynamic order parameter ?and the dynamic susceptibility , we have estimated the critical exponents and ?(measured from the data read at the critical temperature obtained from Binder cumulant), and (measured from the peak positions of dynamic susceptibility). Our results indicate that such driven Ising ferromagnet belongs to the same universality class of the two-dimensional equilibrium Ising ferromagnet (where and ), within the limits of statistical errors.
基金the National Natural Science Foundation of China (Grant No. 10872164)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. 220542)+1 种基金the Key Project of Shanxi Education Committee (Grant No.05JK271)the Scientific Research Foundation of Xi’an University of Technology (Grant No.210532).
文摘Convection in a horizontal fluid layer heated from below is one of models for studying patterns of convection in binary fluid mixtures and has been extensively studied. In this article, the convection structures in a rectangular cell were investigated for the aspect-ratio Г= 12 and the separation ratio ψ = -0.47. Simulations were preformed by solving the hydrodynamic equations using the SIMPLE method. A Counter Propagating Wave (CPW) state was found in binary fluid convection with a periodically horizontal motion of defects, and the pattern dynamics was further discuss.
基金supported by the National Natural Science Foundation of China(No.10572001).
文摘This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in our previous paper 'Steady-state response of the wave propagation in a magneto-electro-elastic square column' published in CME, the dynamical behavior of MEESC was studied in this paper. The unlimited column is an open system. The transientstate response in the open system subjected by arbitrary external fields was derived when the propagating wave pursuing method was introduced.
文摘We study the two-dimensional above-barrier penetration and the sub-barrier tunneling of non-relativistic particles and photons, described in the quasi-monochromatic approximation by simple plane waves. Our scheme represents the motion from the left free-motion zero-potential region to the right zero-potential region through the intermediate region with a one-dimensional rectangular potential barrier along the axis, normal to the both parallel interfaces between all three regions, and with the zero potential along the axis, parallel to the those interfaces. We have firstly obtained the analytical expressions for the infinite series of multiple internal and external reflections and also of multiple transmitted waves of particles and photons, with equal shifts between them along the interfaces for the above-barrier penetration and with various shifts between them in the case of the sub-barrier tunneling. Finally the Hartman and Fletcher effect for any transmitted wave is established.
文摘The dynamical response of spin-S(S=1, 3/2, 2, 3) Ising ferromagnet to the plane propagating wave, standing magnetic field wave and uniformly oscillating field with constant frequency are studied separately in two dimensions by extensive Monte Carlo simulation. Depending upon the strength of the magnetic field and the value of the spin state of the Ising spin lattice two different dynamical phases are observed. For a fixed value of S and the amplitude of the propagating magnetic field wave the system undergoes a dynamical phase transition from propagating phase to pinned phase as the temperature of the system is cooled down. Similarly in case with standing magnetic wave the system undergoes dynamical phase transition from high temperature phase where spins oscillate coherently in alternate bands of half wavelength of the standing magnetic wave to the low temperature pinned or spin frozen phase. For a fixed value of the amplitude of magnetic field oscillation the transition temperature is observed to decrease to a limiting value as the value of spin S is increased. The time averaged magnetisation over a full cycle of the magnetic field oscillation plays the role of the dynamic order parameter. A comprehensive phase boundary is drawn in the plane of magnetic field amplitude and dynamic transition temperature. It is found that the phase boundary shrinks inwards for high value of spin state S.Also in the low temperature(and high field) region the phase boundaries are closely spaced.