Effective identification of traffic accident-prone points can reduce accident risks and eliminate safety hazards.This paper first systematically compares the research in Chinese and foreign literature,and proposes thr...Effective identification of traffic accident-prone points can reduce accident risks and eliminate safety hazards.This paper first systematically compares the research in Chinese and foreign literature,and proposes three types of identification indicators,namely absolute,relative and comprehensive,according to different reference standards.According to the evaluation indicators and modelling methods,the current status of research and problems in identification theory and methods are systematically summarised in terms of mathematical statistics,cluster analysis,machine learning and conflict technology.The study shows that the foreign literature focuses on the innovation of data and indicators and changes from accident point safety management to road network safety management,while the research in Chinese literature focuses on the integration of multiple identification methods and theoretical innovation.Driven by big data,the identification of traffic accident-prone points has been further developed at the meso-micro scale.Morphological image processing methods are widely used,combined with GIS platforms,to accurately mine the spatial attributes and correlations of accidents.Also,considering the spatial and temporal distribution of accidents,the identification results are also transformed from regions to specific road sections and points to achieve more accurate identification.展开更多
首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处...首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处理过程及可行性。实验结果表明本文提出的方法可以大大提高交通事故黑点排查效率。展开更多
基金supported by The Fundamental Research Funds for the Central Universities(No:2022RC023).
文摘Effective identification of traffic accident-prone points can reduce accident risks and eliminate safety hazards.This paper first systematically compares the research in Chinese and foreign literature,and proposes three types of identification indicators,namely absolute,relative and comprehensive,according to different reference standards.According to the evaluation indicators and modelling methods,the current status of research and problems in identification theory and methods are systematically summarised in terms of mathematical statistics,cluster analysis,machine learning and conflict technology.The study shows that the foreign literature focuses on the innovation of data and indicators and changes from accident point safety management to road network safety management,while the research in Chinese literature focuses on the integration of multiple identification methods and theoretical innovation.Driven by big data,the identification of traffic accident-prone points has been further developed at the meso-micro scale.Morphological image processing methods are widely used,combined with GIS platforms,to accurately mine the spatial attributes and correlations of accidents.Also,considering the spatial and temporal distribution of accidents,the identification results are also transformed from regions to specific road sections and points to achieve more accurate identification.
基金福建省自然科学基金(the Natural Science Foundation of Fujian Province of China under Grant No.A0310008)福建省高新技术研究开放计划重点项目(No.2003H 043)
文摘首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处理过程及可行性。实验结果表明本文提出的方法可以大大提高交通事故黑点排查效率。