The construction of highly active catalysts for methanol oxidation reaction(MOR)is central to direct methanol fuel cells.Tremendous progress has been made in transition metal phosphides(TMPs)based catalysts.However,TM...The construction of highly active catalysts for methanol oxidation reaction(MOR)is central to direct methanol fuel cells.Tremendous progress has been made in transition metal phosphides(TMPs)based catalysts.However,TMPs would be partially damaged and transformed into new substances(e.g.,Pt-M-P composite,where M represents a second transition metal)during Pt deposition process.This would pose a large obstacle to the cognition of the real promoting effects of TMPs in MOR.Herein,Co_(2)P co-catalysts(Pt-P/Co_(2)P@NPC,where NPC stands for N and P co-doped carbon)and Pt-Co-P composite catalysts(Pt-CoP/NPC)were controllably synthesized.Electrocatalysis tests show that the Pt-Co-P/NPC exhibits superior MOR activity as high as 1016 m A/mg_(Pt),significantly exceeding that of Pt-P/Co_(2)P@NPC(345 m A/mg_(Pt)).This result indicates that the promoting effect is ascribed primarily to the resultant Pt-Co-P composite,in sharply contrast to previous viewpoint that Co_(2)P itself improves the activity.Further mechanistic studies reveal that Pt-Co-P/NPC exhibits much stronger electron interaction and thus manifesting a remarkably weaker CO absorption than Pt-P/Co_(2)P@NPC and Pt/C.Moreover,Pt-Co-P is also more capable of producing oxygen-containing adsorbate and thus accelerating the removal of surface-bonded CO^(*),ultimately boosting the MOR performance.展开更多
Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conve...Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors.Moreover,the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging.Herein,we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium(V)doping in the MoS_(2)lattice with excellent doping uniformity and stability.The lateral growth of the host MoS_(2)lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter.The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS_(2)monolayer film with excessively high doping concentrations.The excellent wafer-scale uniformity of the highly V-doped MoS_(2)film was confirmed through a series of microscopic,spectroscopic,and electrical analyses.展开更多
The lattice vibration mode of the laser crystals NAB and NYAB are measured by Raman spectra method and the possible effects of the BO<sub>3</sub> and NdO<sub>6</sub> vibration modes on the non-...The lattice vibration mode of the laser crystals NAB and NYAB are measured by Raman spectra method and the possible effects of the BO<sub>3</sub> and NdO<sub>6</sub> vibration modes on the non-radiative transition of the active ions are discussed.展开更多
During the last decade,photo-catalysis is emerging as a powerful tool in synthetic organic chemistry.This mini-review summarizes the recent advances of photo-promoted organic transformations under transition metal-fre...During the last decade,photo-catalysis is emerging as a powerful tool in synthetic organic chemistry.This mini-review summarizes the recent advances of photo-promoted organic transformations under transition metal-free conditions in the absence of conventional photo-sensitizers.展开更多
基金2013年度国家社科基金项目"近代以来埃及宗教与政治关系的历史考察"(项目编号:13BSS004)2010年度国家社科基金重大招标项目"非洲阿拉伯国家通史研究"(项目编号:10&ZD115)+1 种基金2012年度内蒙古高校"青年科技英才计划(青年科技领军人才)"建设项目伊朗马什哈德菲尔多西大学(Ferdowsi University of Mashhad)国际访问学者项目(项目编号:IVSP2017-18)
基金financially supported from the National Natural Science Foundation of China(Nos.12074048 and 12147102)the Project for Fundamental and Frontier Research in Chongqing(No.cstc2020jcyj-msxm X0796)the Fundamental Research Funds for the Central Universities(No.2022CDJXY-002)。
文摘The construction of highly active catalysts for methanol oxidation reaction(MOR)is central to direct methanol fuel cells.Tremendous progress has been made in transition metal phosphides(TMPs)based catalysts.However,TMPs would be partially damaged and transformed into new substances(e.g.,Pt-M-P composite,where M represents a second transition metal)during Pt deposition process.This would pose a large obstacle to the cognition of the real promoting effects of TMPs in MOR.Herein,Co_(2)P co-catalysts(Pt-P/Co_(2)P@NPC,where NPC stands for N and P co-doped carbon)and Pt-Co-P composite catalysts(Pt-CoP/NPC)were controllably synthesized.Electrocatalysis tests show that the Pt-Co-P/NPC exhibits superior MOR activity as high as 1016 m A/mg_(Pt),significantly exceeding that of Pt-P/Co_(2)P@NPC(345 m A/mg_(Pt)).This result indicates that the promoting effect is ascribed primarily to the resultant Pt-Co-P composite,in sharply contrast to previous viewpoint that Co_(2)P itself improves the activity.Further mechanistic studies reveal that Pt-Co-P/NPC exhibits much stronger electron interaction and thus manifesting a remarkably weaker CO absorption than Pt-P/Co_(2)P@NPC and Pt/C.Moreover,Pt-Co-P is also more capable of producing oxygen-containing adsorbate and thus accelerating the removal of surface-bonded CO^(*),ultimately boosting the MOR performance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(Nos.2019R1A2C1009025 and 2022R1A4A2000823)2022 research Fund(No.1.220024.01)of Ulsan National Institute of Science&Technology(UNIST).
文摘Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors.Moreover,the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging.Herein,we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium(V)doping in the MoS_(2)lattice with excellent doping uniformity and stability.The lateral growth of the host MoS_(2)lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter.The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS_(2)monolayer film with excessively high doping concentrations.The excellent wafer-scale uniformity of the highly V-doped MoS_(2)film was confirmed through a series of microscopic,spectroscopic,and electrical analyses.
文摘The lattice vibration mode of the laser crystals NAB and NYAB are measured by Raman spectra method and the possible effects of the BO<sub>3</sub> and NdO<sub>6</sub> vibration modes on the non-radiative transition of the active ions are discussed.
基金financial support from the Startup Grant of Nanjing Tech University (No. 38037037)the SICAM Fellowship from Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘During the last decade,photo-catalysis is emerging as a powerful tool in synthetic organic chemistry.This mini-review summarizes the recent advances of photo-promoted organic transformations under transition metal-free conditions in the absence of conventional photo-sensitizers.