This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global aver...This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global average. The country-averaged annual mean surface air temperature has increased by 1.1℃ over the past 50 years and 0.5-0.8℃ over the past 100 years, slightly higher than the global temperature increase for the same periods. Northern China and winter have experienced the greatest increases in surface air temperature. Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable, with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase, and North China a severe drought. Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings, show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases, while the temperature change of the first half of the 20th century may be due to solar activity, volcanic eruptions and sea surface temperature change. A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC (National Climate Center, China Meteorological Administration) and the IAP (Institute of Atmospheric Physics, Chinese Academy of Sciences), as well as 40 models developed overseas, indicate a potential significant warming in China in the 21st century, with the largest warming set to occur in winter months and in northern China. Under varied emission scenarios, the country-averaged annual mean temperature is projected to incre展开更多
Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of...Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.展开更多
Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in preci...Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in precipitation in China and the associated atmospheric circulation patterns using the Couple Model Intercomparison Project 5 Phase (CMIP5) simulations under the RCP4.5 and RCP8.5 scenarios. The results consistently indicate that the annual precipitation in China is projected to significantly increase at the end of the 21st century compared to the present-day levels. The number of days and the intensity of medium rain, large rain and heavy rain are obviously increased, while the number of trace rain days is projected to decrease over the entire area of China. Further analysis indicates that the significant increase of annual precipitation in Northwest China is primarily due to the increase of light rain and the increases in North and Northeast China are primarily due to the increase of medium rain. In the region of southern China, the increases of large rain and heavy rain play an important role in the increase of annual precipitation, while light rain events play a negative role. Analysis of the changes in atmospheric circulation indicates that the East Asian summer monsoon circulation is projected to be considerably stronger, and the local atmospheric stratification is projected to be more unstable, all of which provide a background benefit for the increase of precipitation and extreme rainfall events in China under global warming scenarios.展开更多
文摘This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global average. The country-averaged annual mean surface air temperature has increased by 1.1℃ over the past 50 years and 0.5-0.8℃ over the past 100 years, slightly higher than the global temperature increase for the same periods. Northern China and winter have experienced the greatest increases in surface air temperature. Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable, with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase, and North China a severe drought. Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings, show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases, while the temperature change of the first half of the 20th century may be due to solar activity, volcanic eruptions and sea surface temperature change. A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC (National Climate Center, China Meteorological Administration) and the IAP (Institute of Atmospheric Physics, Chinese Academy of Sciences), as well as 40 models developed overseas, indicate a potential significant warming in China in the 21st century, with the largest warming set to occur in winter months and in northern China. Under varied emission scenarios, the country-averaged annual mean temperature is projected to incre
基金supported by the National Natural Science Foundation of China(2009CB421407 and 2010CB 950501)
文摘Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.
基金supported by the National Basic Research Program of China (2012CB955401)the "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (XDA05090306)+1 种基金the National Natural Science Foundation of China (41275075)the CAS-CSIRO Cooperative Research Program (GJHZ1223)
文摘Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in precipitation in China and the associated atmospheric circulation patterns using the Couple Model Intercomparison Project 5 Phase (CMIP5) simulations under the RCP4.5 and RCP8.5 scenarios. The results consistently indicate that the annual precipitation in China is projected to significantly increase at the end of the 21st century compared to the present-day levels. The number of days and the intensity of medium rain, large rain and heavy rain are obviously increased, while the number of trace rain days is projected to decrease over the entire area of China. Further analysis indicates that the significant increase of annual precipitation in Northwest China is primarily due to the increase of light rain and the increases in North and Northeast China are primarily due to the increase of medium rain. In the region of southern China, the increases of large rain and heavy rain play an important role in the increase of annual precipitation, while light rain events play a negative role. Analysis of the changes in atmospheric circulation indicates that the East Asian summer monsoon circulation is projected to be considerably stronger, and the local atmospheric stratification is projected to be more unstable, all of which provide a background benefit for the increase of precipitation and extreme rainfall events in China under global warming scenarios.