This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solu...This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.展开更多
A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinder...A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10471013,10471022)the Ministry of Education of China Science and Technology Major Projects (Grant No.104090)
文摘This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.
基金Projects(51605361,51505357) supported by the National Natural Science Foundation of ChinaProjects(XJS16041,JB160411) supported by the Fundamental Research Funds for the Central Universities,China
文摘A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.