This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles ...This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.展开更多
The optimization of the drum structure is beneficial to improve the particle motion and mixing in rotary drums.In this work,two kinds of drum structures,Lacy cylinder drum(LC)and Lacy-lifters cylinder drum(LLC),are de...The optimization of the drum structure is beneficial to improve the particle motion and mixing in rotary drums.In this work,two kinds of drum structures,Lacy cylinder drum(LC)and Lacy-lifters cylinder drum(LLC),are developed on the basic of cylinder drum to enhance the heat transfer area.The particle motion and mixing process are simulated by DEM method.Based on the grid independence and model validation,the contact number between particles and wall,particle velocity profile,thickness of active layer,particle exchange coefficient,particle concentration profile and mixing index are demonstrated.The influences of the drum structure and the operation parameters are further evaluated.The results show that the contact number between particles and wall is improved in LC and LLC compared to cylinder drum.The particle velocity in LC is higher than that in cylinder drum at high rotating speed,and the particle velocity of the particle falling region is significantly improved in LLC.Compared to cylinder drum and LC,the thickness of active layer in LLC is smaller,while the local particle mixing quality is proved to be the best in the active region.In addition,the particle exchange coefficients between static region and active region in the three drums are compared and LLC is found tending to weaken the particle flow.Besides,the fluctuations of particle concentration in the active region,static region,and boundary region are weakened in LLC,and the equilibrium state is reached earlier.In addition,the overall particle mixing performance in cylinder drum,LC and LLC is analyzed.The particle mixing performance in cylinder drum is the worst,while the difference in mixing quality of LC and LLC depends on the operation conditions.展开更多
The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered ball...The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10771024)
文摘This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.
文摘The optimization of the drum structure is beneficial to improve the particle motion and mixing in rotary drums.In this work,two kinds of drum structures,Lacy cylinder drum(LC)and Lacy-lifters cylinder drum(LLC),are developed on the basic of cylinder drum to enhance the heat transfer area.The particle motion and mixing process are simulated by DEM method.Based on the grid independence and model validation,the contact number between particles and wall,particle velocity profile,thickness of active layer,particle exchange coefficient,particle concentration profile and mixing index are demonstrated.The influences of the drum structure and the operation parameters are further evaluated.The results show that the contact number between particles and wall is improved in LC and LLC compared to cylinder drum.The particle velocity in LC is higher than that in cylinder drum at high rotating speed,and the particle velocity of the particle falling region is significantly improved in LLC.Compared to cylinder drum and LC,the thickness of active layer in LLC is smaller,while the local particle mixing quality is proved to be the best in the active region.In addition,the particle exchange coefficients between static region and active region in the three drums are compared and LLC is found tending to weaken the particle flow.Besides,the fluctuations of particle concentration in the active region,static region,and boundary region are weakened in LLC,and the equilibrium state is reached earlier.In addition,the overall particle mixing performance in cylinder drum,LC and LLC is analyzed.The particle mixing performance in cylinder drum is the worst,while the difference in mixing quality of LC and LLC depends on the operation conditions.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFC0210000)the National Natural Science Foundation of China(Grant Nos.41705113 and 41877312)+1 种基金the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,Chinese Academy of Sciences(Grant No.CERAE201802)a Beijing Major Science and Technology Project(Grant No.Z181100005418014).
文摘The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased.