In this paper we introduce the notion of functions meromorphically starlike with respect to symmetric points. Some results obtained here include necessary and/or sufficient conditions for functions belonging to meromo...In this paper we introduce the notion of functions meromorphically starlike with respect to symmetric points. Some results obtained here include necessary and/or sufficient conditions for functions belonging to meromorphically starlike class and a structural formula is given.展开更多
The separability and the entanglement(that is,inseparability)of the composite quantum states play important roles in quantum information theory.Mathematically,a quantum state is a trace-class positive operator with tr...The separability and the entanglement(that is,inseparability)of the composite quantum states play important roles in quantum information theory.Mathematically,a quantum state is a trace-class positive operator with trace one acting on a complex separable Hilbert space.In this paper,in more general frame,the notion of separability for quantum states is generalized to bounded positive operators acting on tensor product of Hilbert spaces.However,not like the quantum state case,there are different kinds of separability for positive operators with different operator topologies.Four types of such separability are discussed;several criteria such as the finite rank entanglement witness criterion,the positive elementary operator criterion and PPT criterion to detect the separability of the positive operators are established;some methods to construct separable positive operators by operator matrices are provided.These may also make us to understand the separability and entanglement of quantum states better,and may be applied to find new separable quantum states.展开更多
We consider the tensor product π_α ? π_βof complementary series representations π_α and π_β of classical rank one groups SO_0(n, 1), SU(n, 1) and Sp(n, 1). We prove that there is a discrete component π_(α+β...We consider the tensor product π_α ? π_βof complementary series representations π_α and π_β of classical rank one groups SO_0(n, 1), SU(n, 1) and Sp(n, 1). We prove that there is a discrete component π_(α+β)for small parameters α and β(in our parametrization). We prove further that for SO_0(n, 1) there are finitely many complementary series of the form π_(α+β+2j,)j = 0, 1,..., k, appearing in the tensor product π_α ? π_βof two complementary series π_α and π_β, where k = k(α, β, n) depends on α, β and n.展开更多
1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this ...1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]展开更多
Self adjointness of the product of differential operators on is studiedhere, using the construction theory of self adjoint operators, we give a sufficient and necessary condition of self adjointness problem.
文摘In this paper we introduce the notion of functions meromorphically starlike with respect to symmetric points. Some results obtained here include necessary and/or sufficient conditions for functions belonging to meromorphically starlike class and a structural formula is given.
基金Supported by National Natural Science Foundation of China(Grant No.11171249)。
文摘The separability and the entanglement(that is,inseparability)of the composite quantum states play important roles in quantum information theory.Mathematically,a quantum state is a trace-class positive operator with trace one acting on a complex separable Hilbert space.In this paper,in more general frame,the notion of separability for quantum states is generalized to bounded positive operators acting on tensor product of Hilbert spaces.However,not like the quantum state case,there are different kinds of separability for positive operators with different operator topologies.Four types of such separability are discussed;several criteria such as the finite rank entanglement witness criterion,the positive elementary operator criterion and PPT criterion to detect the separability of the positive operators are established;some methods to construct separable positive operators by operator matrices are provided.These may also make us to understand the separability and entanglement of quantum states better,and may be applied to find new separable quantum states.
文摘We consider the tensor product π_α ? π_βof complementary series representations π_α and π_β of classical rank one groups SO_0(n, 1), SU(n, 1) and Sp(n, 1). We prove that there is a discrete component π_(α+β)for small parameters α and β(in our parametrization). We prove further that for SO_0(n, 1) there are finitely many complementary series of the form π_(α+β+2j,)j = 0, 1,..., k, appearing in the tensor product π_α ? π_βof two complementary series π_α and π_β, where k = k(α, β, n) depends on α, β and n.
基金Supported by the Special Research Project of Educational Department of Shaanxi Province(No.09JK741)the Research Startup Foundation of Northwest University(No.JXL08PR09066)
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10475056)
文摘1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]
文摘Self adjointness of the product of differential operators on is studiedhere, using the construction theory of self adjoint operators, we give a sufficient and necessary condition of self adjointness problem.