The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, re...The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.展开更多
Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produc...Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation.展开更多
Due to the severe restrictions imposed by legislative frameworks, the removal of polyacrylamide(PAM) rapidly and effectively from produced wastewater in offshore oilfields before discharge is becoming an urgent challe...Due to the severe restrictions imposed by legislative frameworks, the removal of polyacrylamide(PAM) rapidly and effectively from produced wastewater in offshore oilfields before discharge is becoming an urgent challenge. In this study, a novel advanced oxidation process based on plasma operated in the gas–liquid interface was used to rapidly decompose PAM, and multiple methods including viscometry, flow field-flow fractionation multi-angle light scattering, UV–visible spectroscopy, and attenuated total reflectanceFourier transform infrared spectroscopy were used to characterize the changes of PAM.Under a discharge voltage of 25 kV and pH 7.0, the PAM concentration decreased from 100 to 0 mg/L within 20 min and the total organic carbon(TOC) decreased from 49.57 to1.23 mg/L within 240 min, following zero-order reaction kinetics. Even in the presence of background TOC as high as 152.2 mg/L, complete removal of PAM(100 mg/L) was also achieved within 30 min. The biodegradability of PAM improved following plasma treatment for 120 min. Active species(such as O3 and H2O2) were produced in the plasma. Hydroxyl radical was demonstrated to play an important role in the degradation of PAM due to the inhibitory effect observed after the addition of an ·OH scavenger, Na2CO3. Meanwhile, the release of ammonia and nitrate nitrogen confirmed the cleavage of the acylamino group.The results of this study demonstrated that plasma, with its high efficiency and chemicalfree features, is a promising technology for the rapid removal of PAM.展开更多
基金Supported by the National Natural Science Foundation of China (No.59978020).
文摘The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.
文摘Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation.
基金supported by National Natural Scientific Foundation of China(No.2159081)the Ministry of Science and Technology,People’s Republic of China(No.2012AA063401)
文摘Due to the severe restrictions imposed by legislative frameworks, the removal of polyacrylamide(PAM) rapidly and effectively from produced wastewater in offshore oilfields before discharge is becoming an urgent challenge. In this study, a novel advanced oxidation process based on plasma operated in the gas–liquid interface was used to rapidly decompose PAM, and multiple methods including viscometry, flow field-flow fractionation multi-angle light scattering, UV–visible spectroscopy, and attenuated total reflectanceFourier transform infrared spectroscopy were used to characterize the changes of PAM.Under a discharge voltage of 25 kV and pH 7.0, the PAM concentration decreased from 100 to 0 mg/L within 20 min and the total organic carbon(TOC) decreased from 49.57 to1.23 mg/L within 240 min, following zero-order reaction kinetics. Even in the presence of background TOC as high as 152.2 mg/L, complete removal of PAM(100 mg/L) was also achieved within 30 min. The biodegradability of PAM improved following plasma treatment for 120 min. Active species(such as O3 and H2O2) were produced in the plasma. Hydroxyl radical was demonstrated to play an important role in the degradation of PAM due to the inhibitory effect observed after the addition of an ·OH scavenger, Na2CO3. Meanwhile, the release of ammonia and nitrate nitrogen confirmed the cleavage of the acylamino group.The results of this study demonstrated that plasma, with its high efficiency and chemicalfree features, is a promising technology for the rapid removal of PAM.