In this work the one-band effective Hamiltonian governing the electronic states of a quantum dot/ring in a homogenous magnetic field is used to derive a pair/quadruple of nonlinear eigenvalue problems corresponding to...In this work the one-band effective Hamiltonian governing the electronic states of a quantum dot/ring in a homogenous magnetic field is used to derive a pair/quadruple of nonlinear eigenvalue problems corresponding to different spin orientations and in case of rotational symmetry additionally to quantum number±ℓ.We show,that each of those pair/quadruple of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions,which are satisfied for our examples and the common InAs/GaAs heterojunction.Exploiting the minmax property we devise efficient iterative projection methods simultaneously handling the pair/quadruple of nonlinear problems and thereby saving up to 40%of the computational time as compared to the nonlinear Arnoldi method applied to each of the problems separately.展开更多
In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value prob...In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.展开更多
We study the charged 3-body problem with the potential function being (-a)-homogeneous on the mutual distances of any two particles via the variational method and try to find the geometric characterizations of the m...We study the charged 3-body problem with the potential function being (-a)-homogeneous on the mutual distances of any two particles via the variational method and try to find the geometric characterizations of the minimizers. We prove that if the charged 3-body problem admits a triangular central configuration, then the variational minimizing solutions of the problem in the τ/2-antiperiodic function space are exactly defined by the circular motions of this triangular central configuration.展开更多
基金We would like to thank Oleksandr Voskoboynikov for his comments on the physical relevance of the model under consideration.We also thank the anonymous referees for their comments helping us to improve this manuscript.
文摘In this work the one-band effective Hamiltonian governing the electronic states of a quantum dot/ring in a homogenous magnetic field is used to derive a pair/quadruple of nonlinear eigenvalue problems corresponding to different spin orientations and in case of rotational symmetry additionally to quantum number±ℓ.We show,that each of those pair/quadruple of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions,which are satisfied for our examples and the common InAs/GaAs heterojunction.Exploiting the minmax property we devise efficient iterative projection methods simultaneously handling the pair/quadruple of nonlinear problems and thereby saving up to 40%of the computational time as compared to the nonlinear Arnoldi method applied to each of the problems separately.
基金supported by NNSF of China(#11171260)RFDP of Higher Education of China(#20100141110054)
文摘In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.
基金The authors thank sincerely Professor Shanzhong Sun for his careful reading and helpful comments on the manuscript of this paper. The first author was partially supported by the Doctoral Innovation Project of Nankai University. The second author was partially supported by the National Natural Science Foundation of China (Grant No. 11131004), MCME, LPMC of Ministry of Education of China, Nankai University, and the BCMIIS at Capital Normal University.
文摘We study the charged 3-body problem with the potential function being (-a)-homogeneous on the mutual distances of any two particles via the variational method and try to find the geometric characterizations of the minimizers. We prove that if the charged 3-body problem admits a triangular central configuration, then the variational minimizing solutions of the problem in the τ/2-antiperiodic function space are exactly defined by the circular motions of this triangular central configuration.