The quantum key distribution(QKD) has been entering the practical application era. Subsequently, hybrid quantum private communication with discrete-variable signals, continuous-variable signals, and classic optical si...The quantum key distribution(QKD) has been entering the practical application era. Subsequently, hybrid quantum private communication with discrete-variable signals, continuous-variable signals, and classic optical signals becomes inevitable in the practical scenario. In this paper, we experimentally investigated the mutual effects between the discrete-variable QKD(DVQKD) and the continuous-variable QKD(CVQKD) via a fiber channel. The experimental results show that the DVQKD will be influenced by the continuous-variable quantum signals and classic optical signals, while the CVQKD is not sensitive to the discrete-variable quantum signals.展开更多
In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The c...In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The correctness and security of our protocol are discussed.One party cannot learn the other's private information and the third party also cannot learn any information about the private information.展开更多
We propose an efficient quantum private comparison protocol firstly based on one direction quantum walks.With the help of one direction quantum walk,we develop a novel method that allows the semi-honest third party to...We propose an efficient quantum private comparison protocol firstly based on one direction quantum walks.With the help of one direction quantum walk,we develop a novel method that allows the semi-honest third party to set a flag to judge the comparing result,which improves the qubit efficiency and the maximum quantity of the participants’secret messages.Besides,our protocol can judge the size of the secret messages,not only equality.Furthermore,the quantum walks particle is disentangled in the initial state.It only requires a quantum walks operator to move,making our proposed protocol easy to implement and reducing the quantum resources.Through security analysis,we prove that our protocol can withstand well-known attacks and brute-force attacks.Analyses also reveal that our protocol is correct and practical.展开更多
Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to rema...Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to remain classical.In this paper,we propose a semi quantum private comparison scheme based on Greenberge-Horne-Zeilinger(GHZ)class states,which allows two classical participants to compare the equality of their private secret with the help of a quantum third party(server).In the proposed protocol,server is semi-honest who will follow the protocol honestly,but he may try to learn additional information from the protocol execution.The classical participants’activities are restricted to either measuring a quantum state or reflecting it in the classical basis{0,1}.In addition,security and efficiency of the proposed schemes have been discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61170228,61332019 and 61102053)China Postdoctoral Science Foundation(Grant No.2013M540365)+1 种基金the Natural Science Special Fund of Department of Education in Shaanxi(Grant No.12JK0497)Shaanxi Natural Science Foundation(Grant No.2013JM8036)
文摘The quantum key distribution(QKD) has been entering the practical application era. Subsequently, hybrid quantum private communication with discrete-variable signals, continuous-variable signals, and classic optical signals becomes inevitable in the practical scenario. In this paper, we experimentally investigated the mutual effects between the discrete-variable QKD(DVQKD) and the continuous-variable QKD(CVQKD) via a fiber channel. The experimental results show that the DVQKD will be influenced by the continuous-variable quantum signals and classic optical signals, while the CVQKD is not sensitive to the discrete-variable quantum signals.
基金Supported by the High Technology Research and Development Program of China (863 Program,2011AA01A107)Beijing Municipal Special Fund for Cultural and Creative Industries(2009)the Beijing Municipal Natural Science Foundation (4112052)
文摘In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The correctness and security of our protocol are discussed.One party cannot learn the other's private information and the third party also cannot learn any information about the private information.
基金Project supported by the National Key R&D Program of China(Grant No.2020YFB1805405)the 111 Project(Grant No.B21049)+1 种基金the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2019BDKFJJ014)the Fundamental Research Funds for the Central Universities,China(Grant No.2020RC38)。
文摘We propose an efficient quantum private comparison protocol firstly based on one direction quantum walks.With the help of one direction quantum walk,we develop a novel method that allows the semi-honest third party to set a flag to judge the comparing result,which improves the qubit efficiency and the maximum quantity of the participants’secret messages.Besides,our protocol can judge the size of the secret messages,not only equality.Furthermore,the quantum walks particle is disentangled in the initial state.It only requires a quantum walks operator to move,making our proposed protocol easy to implement and reducing the quantum resources.Through security analysis,we prove that our protocol can withstand well-known attacks and brute-force attacks.Analyses also reveal that our protocol is correct and practical.
基金supported by the National Natural Science Foundation of China(Grant No.61572086)Major Project of Education Department in Sichuan(Grant No.18ZA0109)Web Culture Project Sponsored by the Humanities and Social Science Research Base of the Sichuan Provincial Education Department(Grant No.WLWH18-22).
文摘Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to remain classical.In this paper,we propose a semi quantum private comparison scheme based on Greenberge-Horne-Zeilinger(GHZ)class states,which allows two classical participants to compare the equality of their private secret with the help of a quantum third party(server).In the proposed protocol,server is semi-honest who will follow the protocol honestly,but he may try to learn additional information from the protocol execution.The classical participants’activities are restricted to either measuring a quantum state or reflecting it in the classical basis{0,1}.In addition,security and efficiency of the proposed schemes have been discussed.