Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present 展开更多
With the increasing share of wind power,it is expected that wind turbines would provide frequency regulation ancillary service.However,the complex wake effect intensifies the difficulty in controlling wind turbines an...With the increasing share of wind power,it is expected that wind turbines would provide frequency regulation ancillary service.However,the complex wake effect intensifies the difficulty in controlling wind turbines and evaluating the frequency regulation potential from the wind farm.We propose a novel frequency control scheme for doubly-fed induction generator(DFIG)-based wind turbines,in which the wake effect is considered.The proposed control scheme is developed by incorporating the virtual inertia control and primary frequency control in a holistic way.To facilitate frequency regulation in timevarying operation status,the control gains are adaptively adjusted according to wind turbine operation status in the proposed controller.Besides,different kinds of power reserve control approaches are explicitly investigated.Finally,extensive case studies are conducted and simulation results verify that the frequency behavior is significantly improved via the proposed control scheme.展开更多
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present
基金This work was partially supported by Natural Science Foundation of China(No.72071100)Guangdong Basic and Applied Basic Research Fund(No.2019A1515111173)Department of Education of Guangdong Province,and Young Talent Program(No.2018KQNCX223).
文摘With the increasing share of wind power,it is expected that wind turbines would provide frequency regulation ancillary service.However,the complex wake effect intensifies the difficulty in controlling wind turbines and evaluating the frequency regulation potential from the wind farm.We propose a novel frequency control scheme for doubly-fed induction generator(DFIG)-based wind turbines,in which the wake effect is considered.The proposed control scheme is developed by incorporating the virtual inertia control and primary frequency control in a holistic way.To facilitate frequency regulation in timevarying operation status,the control gains are adaptively adjusted according to wind turbine operation status in the proposed controller.Besides,different kinds of power reserve control approaches are explicitly investigated.Finally,extensive case studies are conducted and simulation results verify that the frequency behavior is significantly improved via the proposed control scheme.