The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forec...The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting crude oil prices. However, all of the existing models of prediction can not meet practical needs. Very recently, Wang and Yu proposed a new methodology for handling complex systems-TEI@I methodology by means of a systematic integration of text mining, econometrics and intelligent techniques.Within the framework of TEI@I methodology, econometrical models are used to model the linear components of crude oil price time series (i.e., main trends) while nonlinear components of crude oil price time series (i.e., error terms) are modelled by using artificial neural network (ANN) models. In addition, the impact of irregular and infrequent future events on crude oil price is explored using web-based text mining (WTM) and rule-based expert systems (RES) techniques. Thus, a fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated to improve prediction performance within the framework of the TEI@I methodology. The proposed methodology and the novel forecasting approach are illustrated via an example.展开更多
基金This research is partially supported by NSFC, CAS, RGC of Hong Kong and Ministry of Education and Technology of Japan
文摘The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting crude oil prices. However, all of the existing models of prediction can not meet practical needs. Very recently, Wang and Yu proposed a new methodology for handling complex systems-TEI@I methodology by means of a systematic integration of text mining, econometrics and intelligent techniques.Within the framework of TEI@I methodology, econometrical models are used to model the linear components of crude oil price time series (i.e., main trends) while nonlinear components of crude oil price time series (i.e., error terms) are modelled by using artificial neural network (ANN) models. In addition, the impact of irregular and infrequent future events on crude oil price is explored using web-based text mining (WTM) and rule-based expert systems (RES) techniques. Thus, a fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated to improve prediction performance within the framework of the TEI@I methodology. The proposed methodology and the novel forecasting approach are illustrated via an example.