为了研究预应力钢筋混凝土梁在三点弯曲破坏试验过程中的声发射信号频谱及能量变化特征与梁结构损伤之间的关系,在研究声发射能量与时间的相关图基础上,提取了不同阶段破坏过程中的信号波形。通过FFT变换和小波包变换对信号分析处理,发...为了研究预应力钢筋混凝土梁在三点弯曲破坏试验过程中的声发射信号频谱及能量变化特征与梁结构损伤之间的关系,在研究声发射能量与时间的相关图基础上,提取了不同阶段破坏过程中的信号波形。通过FFT变换和小波包变换对信号分析处理,发现不同损伤破坏阶段的信号频率分布、频带能量变化规律,即试件损伤破坏过程声发射信号频率范围主要在0~325 k Hz,随着损伤的加剧,频率范围会逐渐缩小,幅值和频谱密度会变大;损伤破坏过程中能量主要分布在低频0~125 k Hz高频段能量逐渐衰减,低频0~62.5 k Hz段能量有上升趋势。这些规律对实际工程结构的在线健康监测和损伤评估有指导意义。展开更多
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
基金Research on key technologies of prestressed hybrid CFRP/GFRP in concrete bridges reinforcementScientific research projects of transportation department in Jiangsu Province(No:2012Y09)
文摘为了研究预应力钢筋混凝土梁在三点弯曲破坏试验过程中的声发射信号频谱及能量变化特征与梁结构损伤之间的关系,在研究声发射能量与时间的相关图基础上,提取了不同阶段破坏过程中的信号波形。通过FFT变换和小波包变换对信号分析处理,发现不同损伤破坏阶段的信号频率分布、频带能量变化规律,即试件损伤破坏过程声发射信号频率范围主要在0~325 k Hz,随着损伤的加剧,频率范围会逐渐缩小,幅值和频谱密度会变大;损伤破坏过程中能量主要分布在低频0~125 k Hz高频段能量逐渐衰减,低频0~62.5 k Hz段能量有上升趋势。这些规律对实际工程结构的在线健康监测和损伤评估有指导意义。
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.