This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of...This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of rockbolt types,determination of bolt length and spacing,factor of safety,and compatibility between support elements.Different types of rockbolting used in engineering practise are also presented.The traditional principle of selecting strong rockbolts is valid only in conditions of low in situ stresses in the rock mass.Energy-absorbing rockbolts are preferred in the case of high in situ stresses.A natural pressure arch is formed in the rock at a certain distance behind the tunnel wall.Rockbolts should be long enough to reach the natural pressure arch when the failure zone is small.The bolt length should be at least 1 m beyond the failure zone.In the case of a vast failure zone,tightly spaced short rockbolts are installed to establish an artificial pressure arch within the failure zone and long cables are anchored on the natural pressure arch.In this case,the rockbolts are usually less than 3 m long in mine drifts,but can be up to 7 m in large-scale rock caverns.Bolt spacing is more important than bolt length in the case of establishing an artificial pressure arch.In addition to the factor of safety,the maximum allowable displacement in the tunnel and the ultimate displacement capacity of rockbolts must be also taken into account in the design.Finally,rockbolts should be compatible with other support elements in the same support system in terms of displacement and energy absorption capacities.展开更多
The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag...The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calcula- tions and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.展开更多
In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response a...In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response and pressure of the surrounding rock and the mechanical characteristics of bolts of the tunnel. The results suggest that open zones appear at arch and invert where joints open up, when layered stratum is horizontal, or when the dip angle of in- clined bedding is small. Open zones occur perpendicular to a joint. The failure mode is bending disjunction at the arch tain shear displacement, and lead to obvious geological bedding unsymmetrical load. The failure mode is shear damage. For the joint dip angle in the range of 75-90°, the failure mode is flexural crushing at the wall and vertical shear rup- ture above the arch. The restraining effect of two sides weakens for vertical dip. On the whole, shear failure instabilitytrend would occur and the tunnel collapses evenly. When the angle between the bolt and structure plane is greater than 23°, bolts can enhance the shearing stiffness of joint plane. Unfortunately, in the general purpose graph of tunnel for 250 km/h of passenger dedicated lines, the bolts have equal length and spacing. The rationale behind this is worthy offurther study. For inclined bedding, the surrounding rock pressure at the left wall is more than that at the right wall. In addition, lining is likely to be damaged at left shoulder and side wall. With the dip angle increasing, the unsymmetrical load gradually achieves symmetry. Asymmetry design for support is recommended to reduce the unsymmetrical load on lining disturbed by excavation.展开更多
针对工业中遇到的轴向力作用下大尺寸非标准容器法兰的泄漏问题,搭建了相应的试验装置,研究了不同预紧力、不同初始压力及不同加载方案下,螺栓载荷、法兰内部压力及泄漏率的变化规律。试验结果表明,基于ASME PCC-1,JIS B 2251的加载方...针对工业中遇到的轴向力作用下大尺寸非标准容器法兰的泄漏问题,搭建了相应的试验装置,研究了不同预紧力、不同初始压力及不同加载方案下,螺栓载荷、法兰内部压力及泄漏率的变化规律。试验结果表明,基于ASME PCC-1,JIS B 2251的加载方案应用于本法兰时仍为较优化方案,但基于JIS B 2251的加载方案下螺栓载荷均匀性最好,加载轮次最少。当法兰接头初始压力为200,800 kPa时,预紧力的增加难以有效降低法兰内部最大泄漏速率,当初始压力为400,600 kPa,预紧力由6.0 kN增加至9.0 kN时,最大泄漏速率分别降低了30.4%和18.2%。展开更多
文摘This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of rockbolt types,determination of bolt length and spacing,factor of safety,and compatibility between support elements.Different types of rockbolting used in engineering practise are also presented.The traditional principle of selecting strong rockbolts is valid only in conditions of low in situ stresses in the rock mass.Energy-absorbing rockbolts are preferred in the case of high in situ stresses.A natural pressure arch is formed in the rock at a certain distance behind the tunnel wall.Rockbolts should be long enough to reach the natural pressure arch when the failure zone is small.The bolt length should be at least 1 m beyond the failure zone.In the case of a vast failure zone,tightly spaced short rockbolts are installed to establish an artificial pressure arch within the failure zone and long cables are anchored on the natural pressure arch.In this case,the rockbolts are usually less than 3 m long in mine drifts,but can be up to 7 m in large-scale rock caverns.Bolt spacing is more important than bolt length in the case of establishing an artificial pressure arch.In addition to the factor of safety,the maximum allowable displacement in the tunnel and the ultimate displacement capacity of rockbolts must be also taken into account in the design.Finally,rockbolts should be compatible with other support elements in the same support system in terms of displacement and energy absorption capacities.
基金Project 2004GG3204001 supported by the Science and Technology Development Plan of Shandong Province
文摘The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calcula- tions and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.
基金supported by the National Natural Science Foundation of China (No. 51078318)
文摘In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response and pressure of the surrounding rock and the mechanical characteristics of bolts of the tunnel. The results suggest that open zones appear at arch and invert where joints open up, when layered stratum is horizontal, or when the dip angle of in- clined bedding is small. Open zones occur perpendicular to a joint. The failure mode is bending disjunction at the arch tain shear displacement, and lead to obvious geological bedding unsymmetrical load. The failure mode is shear damage. For the joint dip angle in the range of 75-90°, the failure mode is flexural crushing at the wall and vertical shear rup- ture above the arch. The restraining effect of two sides weakens for vertical dip. On the whole, shear failure instabilitytrend would occur and the tunnel collapses evenly. When the angle between the bolt and structure plane is greater than 23°, bolts can enhance the shearing stiffness of joint plane. Unfortunately, in the general purpose graph of tunnel for 250 km/h of passenger dedicated lines, the bolts have equal length and spacing. The rationale behind this is worthy offurther study. For inclined bedding, the surrounding rock pressure at the left wall is more than that at the right wall. In addition, lining is likely to be damaged at left shoulder and side wall. With the dip angle increasing, the unsymmetrical load gradually achieves symmetry. Asymmetry design for support is recommended to reduce the unsymmetrical load on lining disturbed by excavation.
文摘针对工业中遇到的轴向力作用下大尺寸非标准容器法兰的泄漏问题,搭建了相应的试验装置,研究了不同预紧力、不同初始压力及不同加载方案下,螺栓载荷、法兰内部压力及泄漏率的变化规律。试验结果表明,基于ASME PCC-1,JIS B 2251的加载方案应用于本法兰时仍为较优化方案,但基于JIS B 2251的加载方案下螺栓载荷均匀性最好,加载轮次最少。当法兰接头初始压力为200,800 kPa时,预紧力的增加难以有效降低法兰内部最大泄漏速率,当初始压力为400,600 kPa,预紧力由6.0 kN增加至9.0 kN时,最大泄漏速率分别降低了30.4%和18.2%。