Through a bioreplication approach, we have fabricated artificial visual decoys for the invasive species Agrilus planipen- nis--commonly known as the Emerald Ash Borer (EAB). The mating behavior of this species invol...Through a bioreplication approach, we have fabricated artificial visual decoys for the invasive species Agrilus planipen- nis--commonly known as the Emerald Ash Borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulating. The male spots the female on the leaflet by visually detecting the iridescent green color of the female's elytra. As rearing EAB and then deploying dead females as decoys for trapping is both arduous and inconvenient, we decided to fabricate artificial decoys. We used a dead female to make a negative die of nickel and a positive die of epoxy. Decoys were then made by first depositing a quarter-wave-stack Bragg reflector on a polymer sheet and then stamping it with a pair of matched negative and positive dies to take the shape of the upper surface of an EAB female. As nearly 100 artificial decoys were fabricated from just one EAB female, this bioreplication process is industrially scalable. Preliminary results from a field trapping test are indicative of success.展开更多
This paper presents theoretical analysis of unconventional forging process of hollowed shaft from Ti-6Al-4V alloy in a three-slide forging press.This method in comparison with other metal forming methods allows for ob...This paper presents theoretical analysis of unconventional forging process of hollowed shaft from Ti-6Al-4V alloy in a three-slide forging press.This method in comparison with other metal forming methods allows for obtaining of hollowed products.The designed process is verified theoretically by means of numerical simulations based on finite element method with assumption of 3D state of strain.The following factors are considered in the analysis:material flow kinematics,strain distribution,temperature distribution and force of process.On the basis of results,it is stated that the application of designed technology allows for obtaining of a product of assumed quality.A comparison is made between material consumption in analyzed process and material consumption in typical metal forming methods,also in used at present technology of shaft manufacturing by machining only.It is stated that the application of forging in the three-slide forging press allows for a considerable decrease of manufacturing costs due to material savings and decrease of labor consumption of operations at finishing.展开更多
文摘Through a bioreplication approach, we have fabricated artificial visual decoys for the invasive species Agrilus planipen- nis--commonly known as the Emerald Ash Borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulating. The male spots the female on the leaflet by visually detecting the iridescent green color of the female's elytra. As rearing EAB and then deploying dead females as decoys for trapping is both arduous and inconvenient, we decided to fabricate artificial decoys. We used a dead female to make a negative die of nickel and a positive die of epoxy. Decoys were then made by first depositing a quarter-wave-stack Bragg reflector on a polymer sheet and then stamping it with a pair of matched negative and positive dies to take the shape of the upper surface of an EAB female. As nearly 100 artificial decoys were fabricated from just one EAB female, this bioreplication process is industrially scalable. Preliminary results from a field trapping test are indicative of success.
基金the Structural Funds in the Operational Programme-Innovative Economy (IE OP) Financed from the European Regional Development Fund(No.POIG.01.01.02-00-015/08-00)
文摘This paper presents theoretical analysis of unconventional forging process of hollowed shaft from Ti-6Al-4V alloy in a three-slide forging press.This method in comparison with other metal forming methods allows for obtaining of hollowed products.The designed process is verified theoretically by means of numerical simulations based on finite element method with assumption of 3D state of strain.The following factors are considered in the analysis:material flow kinematics,strain distribution,temperature distribution and force of process.On the basis of results,it is stated that the application of designed technology allows for obtaining of a product of assumed quality.A comparison is made between material consumption in analyzed process and material consumption in typical metal forming methods,also in used at present technology of shaft manufacturing by machining only.It is stated that the application of forging in the three-slide forging press allows for a considerable decrease of manufacturing costs due to material savings and decrease of labor consumption of operations at finishing.