A laboratory test was performed to assess the effectiveness of vacuum preloading incorporated with electroosmotic (EOM) treatment on silty clay (combined method) for reclamation projects like new disposal ponds, where...A laboratory test was performed to assess the effectiveness of vacuum preloading incorporated with electroosmotic (EOM) treatment on silty clay (combined method) for reclamation projects like new disposal ponds, where the horizontal electrode configurations beneath the soil layer were possible and the drainage pipes and the prefabricated vertical drains (PVDs) system could be easily installed in advance before the sludge dragged from sea bed or river bed was filled into the site. Three groups of tests were conducted on the silty clay from Qinhuai River in Nanjing, China. The model is able to apply vacuum pressure at the bottom of the soil layer and a direct current electric field simultaneously. It is also possible to measure the pore pressures at different depths of soil column, and the changes in settlement and volume with the elapsed time. In this study, the vacuum preloading method, vacuum preloading applied at the bottom (VAB method), was applied and the cathodes were installed beneath the soil layer. The results obtained indicate substantial reduction in water content, and increases in dry density and undrained shear strength in comparison with those obtained by the vacuum preloading only, particularly at the positions close to the anode. The combined method utilizes the vertical drainage flow created by the electroosmosis integrating the horizontal drainage flow created mostly by the vacuum pressure. The total drainage flow can be calculated as a result of the vertical drainage flow by electroosmosis only and the horizontal drainage flow by the vacuum preloading only. The way of placement of the cathode and the anode in the combined method also overcomes the disadvantage of EOM method itself, i.e. the appearance of cracks between the anode and the surrounding soil. Moreover, it is observed that the vacuum preloading plays a primary role in earlier stage in deduction of free pore water; meanwhile, the electroosmotic method is more efficient in later stage for absorbing water in the diffused double layers of展开更多
文摘A laboratory test was performed to assess the effectiveness of vacuum preloading incorporated with electroosmotic (EOM) treatment on silty clay (combined method) for reclamation projects like new disposal ponds, where the horizontal electrode configurations beneath the soil layer were possible and the drainage pipes and the prefabricated vertical drains (PVDs) system could be easily installed in advance before the sludge dragged from sea bed or river bed was filled into the site. Three groups of tests were conducted on the silty clay from Qinhuai River in Nanjing, China. The model is able to apply vacuum pressure at the bottom of the soil layer and a direct current electric field simultaneously. It is also possible to measure the pore pressures at different depths of soil column, and the changes in settlement and volume with the elapsed time. In this study, the vacuum preloading method, vacuum preloading applied at the bottom (VAB method), was applied and the cathodes were installed beneath the soil layer. The results obtained indicate substantial reduction in water content, and increases in dry density and undrained shear strength in comparison with those obtained by the vacuum preloading only, particularly at the positions close to the anode. The combined method utilizes the vertical drainage flow created by the electroosmosis integrating the horizontal drainage flow created mostly by the vacuum pressure. The total drainage flow can be calculated as a result of the vertical drainage flow by electroosmosis only and the horizontal drainage flow by the vacuum preloading only. The way of placement of the cathode and the anode in the combined method also overcomes the disadvantage of EOM method itself, i.e. the appearance of cracks between the anode and the surrounding soil. Moreover, it is observed that the vacuum preloading plays a primary role in earlier stage in deduction of free pore water; meanwhile, the electroosmotic method is more efficient in later stage for absorbing water in the diffused double layers of