Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of ...Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of CO conversion at elevated temperature due to the competition of H_(2)oxidation,together with the low stability of gold nanoparticles,has posed a dear challenge.Herein,we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion(30-100℃)and very good catalyst stability without deactivation in a 200-h test.Detailed characterizations combined with density functional theory(DFT)calculation reveal that the synergistic effect of Au-Cu,the electron transfer from Au to Cu,leads to not only strengthened chemisorption of CO but also weakened dissociation of H_(2),both of which are helpful in inhibiting the competition of H_(2)oxidation thus widening the temperature window for CO total conversion.展开更多
To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO lo...To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer.展开更多
The effects of the substrate-water interaction on the wetting behavior in water-oil and surfactant-water-oil systems confined by one substrate which has the preferential interaction to one species of particles have be...The effects of the substrate-water interaction on the wetting behavior in water-oil and surfactant-water-oil systems confined by one substrate which has the preferential interaction to one species of particles have been investigated by using the free energy analysis and discontinuous molecular dynamic simulations. As the preferential interaction between the substrate and water particles varies from small repulsion to large attraction, the partial drying, partial wetting and complete wetting state are observed in sequence. In addition, the wetting behavior of surfactant aqueous solution on the substrate is not only dependent on the interaction, but also limited by the maximum equilibrium concentration of surfactants at the interface.展开更多
基金This work was financially supported by the“Transformational Technologies for Clean Energy and Demonstration”,the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS,No.XDA21030900)DNL Cooperation Fund,CAS(No.DNL201903)the National Natural Science Foundation of China(No.51701201).
文摘Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of CO conversion at elevated temperature due to the competition of H_(2)oxidation,together with the low stability of gold nanoparticles,has posed a dear challenge.Herein,we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion(30-100℃)and very good catalyst stability without deactivation in a 200-h test.Detailed characterizations combined with density functional theory(DFT)calculation reveal that the synergistic effect of Au-Cu,the electron transfer from Au to Cu,leads to not only strengthened chemisorption of CO but also weakened dissociation of H_(2),both of which are helpful in inhibiting the competition of H_(2)oxidation thus widening the temperature window for CO total conversion.
文摘To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer.
文摘The effects of the substrate-water interaction on the wetting behavior in water-oil and surfactant-water-oil systems confined by one substrate which has the preferential interaction to one species of particles have been investigated by using the free energy analysis and discontinuous molecular dynamic simulations. As the preferential interaction between the substrate and water particles varies from small repulsion to large attraction, the partial drying, partial wetting and complete wetting state are observed in sequence. In addition, the wetting behavior of surfactant aqueous solution on the substrate is not only dependent on the interaction, but also limited by the maximum equilibrium concentration of surfactants at the interface.