随着社交网络服务的快速发展及增长,理解网络用户之间潜在的影响力的传播过程,能够帮助用户更好地理解网络结构的动态演化,以及不同的信息对于人与人之间社会关系的影响作用.现有的影响力传播相关的研究工作主要集中在给定静态社交网络...随着社交网络服务的快速发展及增长,理解网络用户之间潜在的影响力的传播过程,能够帮助用户更好地理解网络结构的动态演化,以及不同的信息对于人与人之间社会关系的影响作用.现有的影响力传播相关的研究工作主要集中在给定静态社交网络结构,分析用户之间的影响力传播,找出最具有影响力的用户子集.然而大部分已有工作都忽略了社交网络中的内容信息,即用户之间的影响力作用是与用户产生内容紧密相关的.该文提出了一种融合内容信息和社交网络动态时间特性的潜在影响力传播模型InfoIBP(Influence propagation on Indian Buffet Process).网络中有影响力的用户被看作是一种潜在的特征,可通过不同采样算法和数值逼近求解出来.而对于网络动态时间特性,借助于隐马尔可夫模型来建模不同时间步上的影响力传播过程.在数据集DBLP和Digg上的一系列链接预测、偏好预测和运行时间评测等实验,证明了所提InfoIBP模型能够更准确地建模潜在的影响力传播过程,更有效地挖掘出社交网络中的有影响力用户及更全面地描述网络的动态时间特性,并能对未来的观测数据做出相对精准的预测.展开更多
针对顾客产品偏好快速变化对企业分析和预测顾客偏好能力的要求,提出一种面向产品改进的顾客偏好分析与预测方法,首先构建长短期记忆网络模型,预测产品设计迭代期间的情感值和重要度,并计算预测准确度;然后通过基于产品特征情感变化模...针对顾客产品偏好快速变化对企业分析和预测顾客偏好能力的要求,提出一种面向产品改进的顾客偏好分析与预测方法,首先构建长短期记忆网络模型,预测产品设计迭代期间的情感值和重要度,并计算预测准确度;然后通过基于产品特征情感变化模式的产品设计改进模型判断各个特征的变化模式,明确待改进的产品特征及改进优先级;最后以DJI Mini 2无人机的在线评论为例验证了方法的有效性。展开更多
为有效解决传统推荐算法精度低的问题,提出了一种融合用户偏好和社交活跃度的概率矩阵分解推荐算法(Probabilistic Matrix Factorization Recommendation Algorithm Combining User Preference and Social Activity,UPSA-PMF),通过用户...为有效解决传统推荐算法精度低的问题,提出了一种融合用户偏好和社交活跃度的概率矩阵分解推荐算法(Probabilistic Matrix Factorization Recommendation Algorithm Combining User Preference and Social Activity,UPSA-PMF),通过用户评分数据计算用户间的偏好信任度时,使用了共同项目平衡因子和热门项目惩罚因子进行改进;计算社交网络中的信任度时,考虑了社交活跃度与用户信任度的关系,并将社交活跃度作为惩罚因子,修正用户信任度。将偏好信任度和社交网络中的信任度以动态组合的方式得到最终的信任度,将最终的信任度与概率矩阵模型相结合,实现推荐。实验证明,改进的算法均优于现有的推荐算法,有效提高了推荐质量。展开更多
文摘随着社交网络服务的快速发展及增长,理解网络用户之间潜在的影响力的传播过程,能够帮助用户更好地理解网络结构的动态演化,以及不同的信息对于人与人之间社会关系的影响作用.现有的影响力传播相关的研究工作主要集中在给定静态社交网络结构,分析用户之间的影响力传播,找出最具有影响力的用户子集.然而大部分已有工作都忽略了社交网络中的内容信息,即用户之间的影响力作用是与用户产生内容紧密相关的.该文提出了一种融合内容信息和社交网络动态时间特性的潜在影响力传播模型InfoIBP(Influence propagation on Indian Buffet Process).网络中有影响力的用户被看作是一种潜在的特征,可通过不同采样算法和数值逼近求解出来.而对于网络动态时间特性,借助于隐马尔可夫模型来建模不同时间步上的影响力传播过程.在数据集DBLP和Digg上的一系列链接预测、偏好预测和运行时间评测等实验,证明了所提InfoIBP模型能够更准确地建模潜在的影响力传播过程,更有效地挖掘出社交网络中的有影响力用户及更全面地描述网络的动态时间特性,并能对未来的观测数据做出相对精准的预测.
文摘针对顾客产品偏好快速变化对企业分析和预测顾客偏好能力的要求,提出一种面向产品改进的顾客偏好分析与预测方法,首先构建长短期记忆网络模型,预测产品设计迭代期间的情感值和重要度,并计算预测准确度;然后通过基于产品特征情感变化模式的产品设计改进模型判断各个特征的变化模式,明确待改进的产品特征及改进优先级;最后以DJI Mini 2无人机的在线评论为例验证了方法的有效性。
文摘为有效解决传统推荐算法精度低的问题,提出了一种融合用户偏好和社交活跃度的概率矩阵分解推荐算法(Probabilistic Matrix Factorization Recommendation Algorithm Combining User Preference and Social Activity,UPSA-PMF),通过用户评分数据计算用户间的偏好信任度时,使用了共同项目平衡因子和热门项目惩罚因子进行改进;计算社交网络中的信任度时,考虑了社交活跃度与用户信任度的关系,并将社交活跃度作为惩罚因子,修正用户信任度。将偏好信任度和社交网络中的信任度以动态组合的方式得到最终的信任度,将最终的信任度与概率矩阵模型相结合,实现推荐。实验证明,改进的算法均优于现有的推荐算法,有效提高了推荐质量。