期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于LS-SVM的小样本费用智能预测 被引量:16
1
作者 张晓晖 朱家元 张恒喜 《计算机工程与应用》 CSCD 北大核心 2004年第27期203-204,214,共3页
最小二乘支持向量机引入最小二乘线性系统到支持向量机中,代替传统的支持向量机采用二次规划方法解决函数估计问题。该文推导了用于函数估计的最小二乘支持向量机算法,构建了基于最小二乘支持向量机的智能预测模型,并对机载电子设备费... 最小二乘支持向量机引入最小二乘线性系统到支持向量机中,代替传统的支持向量机采用二次规划方法解决函数估计问题。该文推导了用于函数估计的最小二乘支持向量机算法,构建了基于最小二乘支持向量机的智能预测模型,并对机载电子设备费用预测进行了研究。结果表明最小二乘支持向量机具有比多元对数回归更高的小样本费用预测精度。 展开更多
关键词 机器学习 支持向量机 神经网络 最小二乘支持向量机 小样本预测
下载PDF
基于LS-SVR岩石爆破块度预测 被引量:12
2
作者 史秀志 王洋 +1 位作者 黄丹 史采星 《爆破》 CSCD 北大核心 2016年第3期36-40,共5页
为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天... 为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天矿山爆破数据和35组爆破数据作为小样本容量和正常样本容量,对模型的预测精度进行检验。结果表明:两种样本容量下LS-SVR预测模型的预测结果精度都比同样本容量下人工神经网络(ANN)回归预测的结果精度更高,说明所提出的LS-SVR模型适用于预测露天矿山爆破块度,并且在小样本条件下更具优势。 展开更多
关键词 支持向量机 最小二乘支持向量机回归 LS-SVMlab 岩石块度 小样本预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部