Magnesium carbonate whisker as precursor was prepared from the low-grade magnesite tailings by the route of calcination, hydration, carbonation and thermal decomposition, and then MgO whisker was prepared by calcining...Magnesium carbonate whisker as precursor was prepared from the low-grade magnesite tailings by the route of calcination, hydration, carbonation and thermal decomposition, and then MgO whisker was prepared by calcining the precursor. In addition, the effect of MgO whisker addition on sintering and thermal shock resistance of refractory was also investigated. The results show that the thermal decomposition product is MgCO3·3H2O and its morphology is remarkably influenced by the types of additives, and magnesium carbonate whisker with the length of 10-60 μm and length-diameter ratio of 10-20 is successfully prepared when a type of soluble magnesium salt is added. MgO whisker with the length of 10-40 μm is derived from precursor with the heating rate of 1 ℃/min. The thermal shock resistance of refractory is significantly improved by the addition of MgO whisker due to its effect on binding and preventing crack expanding, and the proper amount of whisker addition is around 3%.展开更多
The mechanism of precursor ionization ahead of strong shock waves has been studied in a low density shock tube. The experimental results are illustrated with Arrhenius plots with kink points dividing them into two par...The mechanism of precursor ionization ahead of strong shock waves has been studied in a low density shock tube. The experimental results are illustrated with Arrhenius plots with kink points dividing them into two parts with apparent activation energy ratio 1:2, namely with the values 7.7 eV and 15.3 eV, and varying with first and third power of the density respectively. A model is proposed to interpret the facts where the process taking place in the precursor region is a two step photo ionization accompanied with the drift flow effect of the gas relative to the shock wave or the ionization recombination effect according to whether the shock speed and initial density are low enough. The product of the A-A collision excitation cross section coefficient S* multiplied by the radiation cross section Q of Argon S×Q=1×10^(-36)(cm^4eV^(-1)) and the three body recombination coefficient of Argon at room temperature k_(ra)=1×10^(-24)(cm^(-6)s^(-1)).展开更多
In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This h...In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This high-pressure assisted impregnation method significantly improves impregnation filling effect of the precursor in and between fiber bundles compared to dozens of traditional impregnation cycles.After undergoing just 9 precursor infiltration pyrolysis(PIP)cycles,the composites achieved relative density of approximately 90%and density of 1.64 g/cm^(3).The critical temperature difference of the 3D PyC–Cf/SiHfBOC composites after the shock of room temperature(RT)–1000℃is as high as 650℃,which is twice that of traditional ceramic materials,showing good thermal shock resistance.Under the effect of Hf modification,a dense HfO_(2)–SiO_(2)oxide layer(thickness of 93μm)was formed in situ on the surface of the 3D PyC–Cf/SiHfBOC composites,effectively preventing further erosion of the composite matrix by high-temperature oxidation gas.Even in the ultra-high-temperature oxygen-containing environment at 1800℃,it still exhibits an excellent non-ablative result(with a linear ablation rate of 0.83×10^(−4)mm/s).This work not only enriches the basic research on lightweight ultra-high-temperature ceramic composites converted from Hf ceramic precursors,but also provides strong technical support for their applications in ultra-high-temperature non-ablative thermal protection materials for high-speed aircraft.展开更多
基金Projects(50874130,50974034)supported by the National Natural Science Foundation of ChinaProject(FMRU2008K01)supported by the Open Research Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology,China
文摘Magnesium carbonate whisker as precursor was prepared from the low-grade magnesite tailings by the route of calcination, hydration, carbonation and thermal decomposition, and then MgO whisker was prepared by calcining the precursor. In addition, the effect of MgO whisker addition on sintering and thermal shock resistance of refractory was also investigated. The results show that the thermal decomposition product is MgCO3·3H2O and its morphology is remarkably influenced by the types of additives, and magnesium carbonate whisker with the length of 10-60 μm and length-diameter ratio of 10-20 is successfully prepared when a type of soluble magnesium salt is added. MgO whisker with the length of 10-40 μm is derived from precursor with the heating rate of 1 ℃/min. The thermal shock resistance of refractory is significantly improved by the addition of MgO whisker due to its effect on binding and preventing crack expanding, and the proper amount of whisker addition is around 3%.
基金The project supported by the National Natural Science Foundation of China
文摘The mechanism of precursor ionization ahead of strong shock waves has been studied in a low density shock tube. The experimental results are illustrated with Arrhenius plots with kink points dividing them into two parts with apparent activation energy ratio 1:2, namely with the values 7.7 eV and 15.3 eV, and varying with first and third power of the density respectively. A model is proposed to interpret the facts where the process taking place in the precursor region is a two step photo ionization accompanied with the drift flow effect of the gas relative to the shock wave or the ionization recombination effect according to whether the shock speed and initial density are low enough. The product of the A-A collision excitation cross section coefficient S* multiplied by the radiation cross section Q of Argon S×Q=1×10^(-36)(cm^4eV^(-1)) and the three body recombination coefficient of Argon at room temperature k_(ra)=1×10^(-24)(cm^(-6)s^(-1)).
基金the National Natural Science Foundation of China(No.52032003)National Natural Science Foundation of China(Nos.51972082,52102093,and 52172041)+1 种基金Postdoctoral Research Foundation of China(No.2021M690817)the Science Foundation of National Key Laboratoryof Science and Technology on Advanced Composites in Special Environments.
文摘In this paper,a high-yield Hf-modified SiHfBOC ceramic precursor was developed,and a high-pressure assisted impregnation pyrolysis method was proposed to achieve the preparation of 3D PyC–Cf/SiHfBOC composites.This high-pressure assisted impregnation method significantly improves impregnation filling effect of the precursor in and between fiber bundles compared to dozens of traditional impregnation cycles.After undergoing just 9 precursor infiltration pyrolysis(PIP)cycles,the composites achieved relative density of approximately 90%and density of 1.64 g/cm^(3).The critical temperature difference of the 3D PyC–Cf/SiHfBOC composites after the shock of room temperature(RT)–1000℃is as high as 650℃,which is twice that of traditional ceramic materials,showing good thermal shock resistance.Under the effect of Hf modification,a dense HfO_(2)–SiO_(2)oxide layer(thickness of 93μm)was formed in situ on the surface of the 3D PyC–Cf/SiHfBOC composites,effectively preventing further erosion of the composite matrix by high-temperature oxidation gas.Even in the ultra-high-temperature oxygen-containing environment at 1800℃,it still exhibits an excellent non-ablative result(with a linear ablation rate of 0.83×10^(−4)mm/s).This work not only enriches the basic research on lightweight ultra-high-temperature ceramic composites converted from Hf ceramic precursors,but also provides strong technical support for their applications in ultra-high-temperature non-ablative thermal protection materials for high-speed aircraft.