Ambiguity Resolution in Precise Point Positioning (PPP-AR) is important to achieving high-precision positioning in wide areas. The International GNSS (Global Navigation Satellite System) Service (IGS) and some other a...Ambiguity Resolution in Precise Point Positioning (PPP-AR) is important to achieving high-precision positioning in wide areas. The International GNSS (Global Navigation Satellite System) Service (IGS) and some other academic organizations have begun to provide phase bias products to enable PPP-AR, such as the integer-clock like products by Centre National d’Etudes Spatials (CNES), Wuhan University (WUM) and the Center for Orbit Determination in Europe (CODE), as well as the Uncalibrated Phase Delay (UPD) products by School of Geodesy and Geomatics (SGG). To evaluate these disparate products, we carry out Global Positioning System (GPS)/Galileo Navigation Satellite System (Galileo) and BeiDou Navigation Satellite System (BDS-only) PPP-AR using 30 days of data in 2019. In general, over 70% and 80% of GPS and Galileo ambiguity residuals after wide-lane phase bias corrections fall in ± 0.1 cycles, in contrast to less than 50% for BeiDou Navigation Satellite (Regional) System (BDS-2);moreover, around 90% of GPS/Galileo narrow-lane ambiguity residuals are within ± 0.1 cycles, while the percentage drops to about 55% in the case of BDS products. GPS/Galileo daily PPP-AR can usually achieve a positioning precision of 2, 2 and 6 mm for the east, north and up components, respectively, for all phase bias products except those based on German Research Centre for Geosciences (GBM) rapid satellite orbits and clocks. Due to the insufficient number of BDS satellites during 2019, the BDS phase bias products perform worse than the GPS/Galileo products in terms of ambiguity fixing rates and daily positioning precisions. BDS-2 daily positions can only reach a precision of about 10 mm in the horizontal and 20 mm in the vertical components, which can be slightly improved after PPP-AR. However, for the year of 2020, BDS-2/BDS-3 (BDS-3 Navigation Satellite System) PPP-AR achieves about 50% better precisions for all three coordinate components.展开更多
Stable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance.In general,the positioning accuracy depends strongly on the quality of satellite orb...Stable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance.In general,the positioning accuracy depends strongly on the quality of satellite orbit and clock products,especially for absolute positioning modes,such as Precise Point Positioning(PPP).With the development of real-time services,real-time Precise Orbit Determination(POD)is indispensable and mainly includes two methods:the ultra-rapid orbit prediction and the real-time filtering orbit determination.The real-time filtering method has a great potential to obtain more stable and reliable products than the ultra-rapid orbit prediction method and thus has attracted increasing attention in commercial companies and research institutes.However,several key issues should be resolved,including the refinement of satellite dynamic stochastic models,adaptive filtering for irregular satellite motions,rapid convergence,and real-time Ambiguity Resolution(AR).This paper reviews and summarizes the current research progress in real-time filtering POD with a focus on the aforementioned issues.In addition,the real-time filtering orbit determination software developed by our group is introduced,and some of the latest results are evaluated.The Three-Dimensional(3D)real-time orbit accuracy of GPS and Galileo satellites is better than 5 cm with AR.In terms of the convergence time and accuracy of kinematic PPP AR,the better performance of the filter orbit products is validated compared to the ultra-rapid orbit products.展开更多
Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires...Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires precise products such as orbits,clocks,code,and phase biases.As one of the analysis centers of the International Global Navigation Satellite System(GNSS)Service(IGS),the Wuhan University Multi-GNSS experiment(WUM)Analysis Center(AC)has provided multi-GNSS Observable-Specific Bias(OSB)products with the associated orbit and clock products.In this article,we first introduce the models and generation strategies of WUM rapid phase clock/bias products and orbit-related products(with a latency of less than 16 h).Then,we assess the performance of these products by comparing them with those of other ACs and by testing the PPP-AR positioning precision,using data from Day of the Year(DOY)047 to DOY 078 in 2022.It is found that the peak-to-peak value of phase OSBs is within 2 ns,and their fluctuations are caused by the clock day boundary discontinuities.The associated Global Positioning System(GPS)orbits have the best consistency with European Space Agency(ESA)products,and those of other systems rank in the medium place.GLObal NAvigation Satellite System(GLONASS)clocks show slightly inconsistency with other ACs’due to the antenna thrust power adopted,while the phase clocks of other GNSSs show no distortion compared with legacy clocks.With well-estimated phase products for Precise Orbit Determination(POD),the intrinsic precision is improved by 14%,17%,and 24%for GPS,Galileo navigation satellite system(Galileo),and BeiDou-3 Navigation Satellite System(BDS-3),respectively.The root mean square of PPP-AR using our products in static mode with respect to IGS weekly solutions can reach 0.16 cm,0.16 cm,and 0.44 cm in the east,north,and up directions,respectively.The multi-GNSS wide-lane ambiguity fixing rates are all above 90%,while the narrow-lane fixing rates above 80%.In conclusion,the phase OSB products at WUM ha展开更多
The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency ...The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency signals,which can benefit the ambiguity resolution(AR)and high-precision positioning.This paper discusses the benefits of quad-frequency observations,including the precision gain of multi-frequency high-precision positioning and the sophisticated choice of extra-wide-lane(EWL)or wide-lane(WL)combinations for instantaneous EWL/WL AR.Additionally,the performance of EWL real-time kinematic(ERTK)positioning that only uses EWL/WL combinations is investigated.The results indicate that the horizontal positioning errors of ERTK positioning using ionosphere-free(IF)EWL observations are approximately 0.5 m for the baseline of 27 km and 1 m for the baseline of 300 km.Furthermore,the positioning errors are reduced to the centimetre level if the IF EWL observations are smoothed by narrow-lane observations for a short period.展开更多
Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we deve...Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we develop an Un-Differenced(UD)IAR method for Global Positioning System(GPS)+BeiDou Navigation Satellite System(BDS)+Galileo navigation satellite system(Galileo)+Global'naya Navigatsionnaya Sputnikovaya Sistema(GLONASS)quad-system POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range.Based on this method,we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center(IAC)of the International GNSS Monitoring and Assessment System(iGMAS).One-year observations in 2020 from 150 stations are employed to investigate performance of orbit and clock products.Notably,the UD Ambiguity Resolution(AR)yields more resolved integer ambiguities than the traditional DD AR,scaling up to 9%,attributable to its avoidance of station baseline formation.Benefiting from the removal of ambiguity parameters,the computational efficiency of parameter estimation undergoes a substantial 70%improvement.Compared with the float solution,the orbit consistencies of UD AR solution achieve the accuracy of 1.9,5.2,2.8,2.1,and 2.7 cm for GPS,BeiDou-2 Navigation Satellite System(BDS-2),BeiDou-3 Navigation Satellite System(BDS-3),Galileo,and GLONASS satellites respectively,reflecting enhancements of 40%,24%,54%,34%,and 42%.Moreover,the standard deviations of Satellite Laser Ranging(SLR)residuals are spanning 2.5–3.5 cm,underscoring a comparable accuracy to the DD AR solution,with discrepancies below 5%.A notable advantage of UD AR lies in its capability to produce the Integer Recovered Clock(IRC),facilitating Precise Point Positioning(PPP)AR without requiring additional Uncalibrated Phase Delay(UPD)products.To assess the performance of quad-system kinematic PPP based on IRC,a network comprising 120 stations is utilized.In comparison to the float solution,the 展开更多
The estimation of the disturbance input acting on a vehicle from its given responses is an inverse problem.To overcome some of the issues related to ill-posed inverse problems,this work proposes a method of reconstruc...The estimation of the disturbance input acting on a vehicle from its given responses is an inverse problem.To overcome some of the issues related to ill-posed inverse problems,this work proposes a method of reconstructing the road roughness based on the Kalman filter method.A half-car model that considers both the vehicle and equipment is established,and the joint input-state estimation method is used to identify the road profile.The capabilities of this methodology in the presence of noise are numerically demonstrated.Moreover,to reduce the influence of the driving speed on the estimation results,a method of choosing the calculation frequency is proposed.A road vibration test is conducted to benchmark the proposed method.展开更多
Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has sig...Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.展开更多
Global Navigation Satellite System precise positioning using carrier phase measurements requires reliable ambiguity resolution.It is challenging to obtain continuous precise positions with a high ambiguity fixing rate...Global Navigation Satellite System precise positioning using carrier phase measurements requires reliable ambiguity resolution.It is challenging to obtain continuous precise positions with a high ambiguity fixing rate under a wide range of dynamic scenes with a single base station,thus the positioning accuracy will be degraded seriously.The Forward-Backward Combination(FBC),a common post-processing smoothing method,is simply the weighted average of the positions of forward and backward filtering.When the ambiguity fixing rate of the one-way(forward or backward)filter is low,the FBC method usually cannot provide accurate and reliable positioning results.Consequently,this paper proposed a method to improve the accuracy of positions by integrating forward and backward AR,which combines the forward and backward ambiguities instead of positions-referred to as ambiguity domain-based integration(ADBI).The purpose of ADBI is to find a reliable correct integer ambiguities by making full use of the integer nature of ambiguities and integrating the ambiguities from the forward and backward filters.Once the integer ambiguities are determined correctly and reliably with ADBI,then the positions are updated with the fixing ambiguities constrained,in which more accurate positions with high confidence can be achieved.The effectiveness of the proposed approach is validated with airborne and car-borne dynamic experiments.The experimental results demonstrated that much better accuracy of position and higher ambiguity-fixed success rate can be achieved than the traditional post-processing method.展开更多
Integrity monitoring for precise point positioning is critical for safety-related applications.With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles,the integrity m...Integrity monitoring for precise point positioning is critical for safety-related applications.With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles,the integrity monitoring method of high-precision positioning has become an essential requirement.While high precision Global Navigation Satellite Systems(GNSS)positioning is widely used in such applications,there are still many difculties in the integrity monitoring method for the multi-frequency multi-GNSS undiferenced and uncombined Precise Point Positioning(PPP).The main difculties are caused by using the measurements of multiple epochs in PPP.Based on the baseline Multiple Hypothesis Solution Separation(MHSS)Advanced Receiver Autonomous Integrity Monitoring(ARAIM)algorithm,this paper discusses the feasibility of the pseudorange-based baseline ARAIM method on the single-epoch PPP based on Real-Time Kinematic(RTK)networks(PPP-RTK)framework to overcome these difculties.In addition,a new scheme is proposed to transfer the conventional PPP process into the single-epoch PPP-RTK framework.The simulation results using the proposed model are analyzed in this study.The Protection Levels(PLs)estimated by PPP Wide-lane Ambiguity Resolution(PPP-WAR)model with regional corrections can reach the meter level and the PLs estimated by PPP Ambiguity Resolution(PPP-AR)and PPP-RTK models are usually the sub-meter level.Given a horizontal Alert Limit(AL)of 1.5 m,the global coverage of availability above 99.9%for PPP-WAR,PPP-AR,and PPP-RTK can reach 92.6%,99.4%,and 99.7%respectively.The results using real kinematic data also show that tight PLs can be achieved when the observation conditions are good.展开更多
Tree rings,with their special characteristics of precise dating,annual resolution,long time series and climate sensitivity,have been widely considered a useful proxy for past climate variations.
Optical measurement systems suffer from a fundamental tradeoff between the field of view(FOV),the resolution and the update rate.A compound eye has the advantages of a wide FOV,high update rate and high sensitivity to...Optical measurement systems suffer from a fundamental tradeoff between the field of view(FOV),the resolution and the update rate.A compound eye has the advantages of a wide FOV,high update rate and high sensitivity to motion,providing inspiration for breaking through the constraint and realizing high-performance optical systems.However,most existing studies on artificial compound eyes are limited by complex structure and low resolution,and they focus on imaging instead of precise measurement.Here,a high-performance lensless compound eye microsystem is developed to realize target motion perception through precise and fast orientation measurement.The microsystem splices multiple sub-FOVs formed by long-focal subeyes,images targets distributed in a panoramic range into a single multiplexing image sensor,and codes the subeye aperture array for distinguishing the targets from different sub-FOVs.A wide-field and high resolution are simultaneously realized in a simple and easy-to-manufacture microelectromechanical system(MEMS)aperture array.Moreover,based on the electronic rolling shutter technique of the image sensor,a hyperframe update rate is achieved by the precise measurement of multiple time-shifted spots of one target.The microsystem achieves an orientation measurement accuracy of 0.0023°(3σ)in the x direction and 0.0028°(3σ)in the y direction in a cone FOV of 120°with an update rate~20 times higher than the frame rate.This study provides a promising approach for achieving optical measurements with comprehensive high performance and may have great significance in various applications,such as vision-controlled directional navigation and high-dynamic target tracking,formation and obstacle avoidance of unmanned aerial vehicles.展开更多
In recent years,the large Low Earth Orbit(LEO)constellations have become a hot topic due to their great potential to improve the Global Navigation Satellite Systems(GNSS)positioning performance.One of the important fo...In recent years,the large Low Earth Orbit(LEO)constellations have become a hot topic due to their great potential to improve the Global Navigation Satellite Systems(GNSS)positioning performance.One of the important focus is how to obtain the accurate and reliable orbits for these constellations with dozens of LEO satellites.The GNSS-based Precise Orbit Determination(POD)will be exclusively performed to achieve this goal,where the Integer Ambiguity Resolution(IAR)plays a key role in acquiring high-quality orbits.In this study,we present a comprehensive analysis of the benefit of the single-receiver IAR in LEO POD and discuss its implication for the future LEO constellations.We perform ambiguity-fixed LEO POD for four typical missions,including Gravity Recovery and Climate Experiment(GRACE)Follow-On(GRACE-FO),Swarm,Jason-3 and Sentinel-3,using the Uncalibrated Phase Delay(UPD)products generated by our GREAT(GNSS+REsearch,Application and Teaching)software.The results show that the ambiguity fixing processing can significantly improve the accuracy of LEO orbits.There are negligible differences between our UPD-based ambiguity-fixed orbits and those based on the Observable Signal Bias(OSB)and Integer Recovery Clock(IRC)products,indicating the good-quality of UPD products we generated.Compared to the float solution,the fixed solution presents a better consistency with the external precise science orbits and the largest accuracy improvement of 5 mm is achieved for GRACE-FO satellites.Meanwhile,the benefit can be observed in laser ranging residuals as well,with a Standard Deviation(STD)reduction of 3–4 mm on average for the fixed solutions.Apart from the absolute orbits,the relative accuracy of the space baseline is also improved by 20–30%in the fixed solutions.The result demonstrates the superior performance of the ambiguity-fixed LEO POD,which appears as a particularly promising technique for POD of future LEO constellations.展开更多
基金National Science Foundation of China(No.42025401)and National Key Research and Development Program of China(No.2018YFC1503601).
文摘Ambiguity Resolution in Precise Point Positioning (PPP-AR) is important to achieving high-precision positioning in wide areas. The International GNSS (Global Navigation Satellite System) Service (IGS) and some other academic organizations have begun to provide phase bias products to enable PPP-AR, such as the integer-clock like products by Centre National d’Etudes Spatials (CNES), Wuhan University (WUM) and the Center for Orbit Determination in Europe (CODE), as well as the Uncalibrated Phase Delay (UPD) products by School of Geodesy and Geomatics (SGG). To evaluate these disparate products, we carry out Global Positioning System (GPS)/Galileo Navigation Satellite System (Galileo) and BeiDou Navigation Satellite System (BDS-only) PPP-AR using 30 days of data in 2019. In general, over 70% and 80% of GPS and Galileo ambiguity residuals after wide-lane phase bias corrections fall in ± 0.1 cycles, in contrast to less than 50% for BeiDou Navigation Satellite (Regional) System (BDS-2);moreover, around 90% of GPS/Galileo narrow-lane ambiguity residuals are within ± 0.1 cycles, while the percentage drops to about 55% in the case of BDS products. GPS/Galileo daily PPP-AR can usually achieve a positioning precision of 2, 2 and 6 mm for the east, north and up components, respectively, for all phase bias products except those based on German Research Centre for Geosciences (GBM) rapid satellite orbits and clocks. Due to the insufficient number of BDS satellites during 2019, the BDS phase bias products perform worse than the GPS/Galileo products in terms of ambiguity fixing rates and daily positioning precisions. BDS-2 daily positions can only reach a precision of about 10 mm in the horizontal and 20 mm in the vertical components, which can be slightly improved after PPP-AR. However, for the year of 2020, BDS-2/BDS-3 (BDS-3 Navigation Satellite System) PPP-AR achieves about 50% better precisions for all three coordinate components.
基金National Natural Science Foundation of China(Grand No.41904021).
文摘Stable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance.In general,the positioning accuracy depends strongly on the quality of satellite orbit and clock products,especially for absolute positioning modes,such as Precise Point Positioning(PPP).With the development of real-time services,real-time Precise Orbit Determination(POD)is indispensable and mainly includes two methods:the ultra-rapid orbit prediction and the real-time filtering orbit determination.The real-time filtering method has a great potential to obtain more stable and reliable products than the ultra-rapid orbit prediction method and thus has attracted increasing attention in commercial companies and research institutes.However,several key issues should be resolved,including the refinement of satellite dynamic stochastic models,adaptive filtering for irregular satellite motions,rapid convergence,and real-time Ambiguity Resolution(AR).This paper reviews and summarizes the current research progress in real-time filtering POD with a focus on the aforementioned issues.In addition,the real-time filtering orbit determination software developed by our group is introduced,and some of the latest results are evaluated.The Three-Dimensional(3D)real-time orbit accuracy of GPS and Galileo satellites is better than 5 cm with AR.In terms of the convergence time and accuracy of kinematic PPP AR,the better performance of the filter orbit products is validated compared to the ultra-rapid orbit products.
基金Hubei Luojia Laboratory(No.220100021)National Science Foundation of China(No.42025401)Fundamental Research Funds for the Central Universities(Nos.2042022kf1035,2042022kf1196).
文摘Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires precise products such as orbits,clocks,code,and phase biases.As one of the analysis centers of the International Global Navigation Satellite System(GNSS)Service(IGS),the Wuhan University Multi-GNSS experiment(WUM)Analysis Center(AC)has provided multi-GNSS Observable-Specific Bias(OSB)products with the associated orbit and clock products.In this article,we first introduce the models and generation strategies of WUM rapid phase clock/bias products and orbit-related products(with a latency of less than 16 h).Then,we assess the performance of these products by comparing them with those of other ACs and by testing the PPP-AR positioning precision,using data from Day of the Year(DOY)047 to DOY 078 in 2022.It is found that the peak-to-peak value of phase OSBs is within 2 ns,and their fluctuations are caused by the clock day boundary discontinuities.The associated Global Positioning System(GPS)orbits have the best consistency with European Space Agency(ESA)products,and those of other systems rank in the medium place.GLObal NAvigation Satellite System(GLONASS)clocks show slightly inconsistency with other ACs’due to the antenna thrust power adopted,while the phase clocks of other GNSSs show no distortion compared with legacy clocks.With well-estimated phase products for Precise Orbit Determination(POD),the intrinsic precision is improved by 14%,17%,and 24%for GPS,Galileo navigation satellite system(Galileo),and BeiDou-3 Navigation Satellite System(BDS-3),respectively.The root mean square of PPP-AR using our products in static mode with respect to IGS weekly solutions can reach 0.16 cm,0.16 cm,and 0.44 cm in the east,north,and up directions,respectively.The multi-GNSS wide-lane ambiguity fixing rates are all above 90%,while the narrow-lane fixing rates above 80%.In conclusion,the phase OSB products at WUM ha
基金the National Natural Science Funds of China(41874030)The Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee(18511101801)+1 种基金The National Key Research and Development Program of China(2017YFA0603102)the Fundamental Research Funds for the Central Universities.
文摘The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency signals,which can benefit the ambiguity resolution(AR)and high-precision positioning.This paper discusses the benefits of quad-frequency observations,including the precision gain of multi-frequency high-precision positioning and the sophisticated choice of extra-wide-lane(EWL)or wide-lane(WL)combinations for instantaneous EWL/WL AR.Additionally,the performance of EWL real-time kinematic(ERTK)positioning that only uses EWL/WL combinations is investigated.The results indicate that the horizontal positioning errors of ERTK positioning using ionosphere-free(IF)EWL observations are approximately 0.5 m for the baseline of 27 km and 1 m for the baseline of 300 km.Furthermore,the positioning errors are reduced to the centimetre level if the IF EWL observations are smoothed by narrow-lane observations for a short period.
基金supported by the National Natural Science Foundation of China(No.42204017,No.41974027,No.42304019)the special fund of Hubei Luojia Laboratory(220100006)+1 种基金the Sino-German mobility program(Grant No.M-0054),China Postdoctoral Science Foundation(2023M732687)the Fundamental Research Funds for the Central Universities(2042022kf1001).
文摘Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we develop an Un-Differenced(UD)IAR method for Global Positioning System(GPS)+BeiDou Navigation Satellite System(BDS)+Galileo navigation satellite system(Galileo)+Global'naya Navigatsionnaya Sputnikovaya Sistema(GLONASS)quad-system POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range.Based on this method,we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center(IAC)of the International GNSS Monitoring and Assessment System(iGMAS).One-year observations in 2020 from 150 stations are employed to investigate performance of orbit and clock products.Notably,the UD Ambiguity Resolution(AR)yields more resolved integer ambiguities than the traditional DD AR,scaling up to 9%,attributable to its avoidance of station baseline formation.Benefiting from the removal of ambiguity parameters,the computational efficiency of parameter estimation undergoes a substantial 70%improvement.Compared with the float solution,the orbit consistencies of UD AR solution achieve the accuracy of 1.9,5.2,2.8,2.1,and 2.7 cm for GPS,BeiDou-2 Navigation Satellite System(BDS-2),BeiDou-3 Navigation Satellite System(BDS-3),Galileo,and GLONASS satellites respectively,reflecting enhancements of 40%,24%,54%,34%,and 42%.Moreover,the standard deviations of Satellite Laser Ranging(SLR)residuals are spanning 2.5–3.5 cm,underscoring a comparable accuracy to the DD AR solution,with discrepancies below 5%.A notable advantage of UD AR lies in its capability to produce the Integer Recovered Clock(IRC),facilitating Precise Point Positioning(PPP)AR without requiring additional Uncalibrated Phase Delay(UPD)products.To assess the performance of quad-system kinematic PPP based on IRC,a network comprising 120 stations is utilized.In comparison to the float solution,the
基金This work was supported by the Natural Science Foundation of Shaanxi Province(Grant No.2021KW-25)the Astronautics Supporting Technology Foundation of China(Grant No.2019-HT-XG)the Fundamental Research Funds for the Central Universities(Grant No.3102018ZY015).
文摘The estimation of the disturbance input acting on a vehicle from its given responses is an inverse problem.To overcome some of the issues related to ill-posed inverse problems,this work proposes a method of reconstructing the road roughness based on the Kalman filter method.A half-car model that considers both the vehicle and equipment is established,and the joint input-state estimation method is used to identify the road profile.The capabilities of this methodology in the presence of noise are numerically demonstrated.Moreover,to reduce the influence of the driving speed on the estimation results,a method of choosing the calculation frequency is proposed.A road vibration test is conducted to benchmark the proposed method.
文摘Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.
基金the National Science Fund for Distinguished Young Scholars(Grant No.41825009)the Funds for Creative Research Groups of China(Grant No.41721003)Changjiang Scholars program.
文摘Global Navigation Satellite System precise positioning using carrier phase measurements requires reliable ambiguity resolution.It is challenging to obtain continuous precise positions with a high ambiguity fixing rate under a wide range of dynamic scenes with a single base station,thus the positioning accuracy will be degraded seriously.The Forward-Backward Combination(FBC),a common post-processing smoothing method,is simply the weighted average of the positions of forward and backward filtering.When the ambiguity fixing rate of the one-way(forward or backward)filter is low,the FBC method usually cannot provide accurate and reliable positioning results.Consequently,this paper proposed a method to improve the accuracy of positions by integrating forward and backward AR,which combines the forward and backward ambiguities instead of positions-referred to as ambiguity domain-based integration(ADBI).The purpose of ADBI is to find a reliable correct integer ambiguities by making full use of the integer nature of ambiguities and integrating the ambiguities from the forward and backward filters.Once the integer ambiguities are determined correctly and reliably with ADBI,then the positions are updated with the fixing ambiguities constrained,in which more accurate positions with high confidence can be achieved.The effectiveness of the proposed approach is validated with airborne and car-borne dynamic experiments.The experimental results demonstrated that much better accuracy of position and higher ambiguity-fixed success rate can be achieved than the traditional post-processing method.
文摘Integrity monitoring for precise point positioning is critical for safety-related applications.With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles,the integrity monitoring method of high-precision positioning has become an essential requirement.While high precision Global Navigation Satellite Systems(GNSS)positioning is widely used in such applications,there are still many difculties in the integrity monitoring method for the multi-frequency multi-GNSS undiferenced and uncombined Precise Point Positioning(PPP).The main difculties are caused by using the measurements of multiple epochs in PPP.Based on the baseline Multiple Hypothesis Solution Separation(MHSS)Advanced Receiver Autonomous Integrity Monitoring(ARAIM)algorithm,this paper discusses the feasibility of the pseudorange-based baseline ARAIM method on the single-epoch PPP based on Real-Time Kinematic(RTK)networks(PPP-RTK)framework to overcome these difculties.In addition,a new scheme is proposed to transfer the conventional PPP process into the single-epoch PPP-RTK framework.The simulation results using the proposed model are analyzed in this study.The Protection Levels(PLs)estimated by PPP Wide-lane Ambiguity Resolution(PPP-WAR)model with regional corrections can reach the meter level and the PLs estimated by PPP Ambiguity Resolution(PPP-AR)and PPP-RTK models are usually the sub-meter level.Given a horizontal Alert Limit(AL)of 1.5 m,the global coverage of availability above 99.9%for PPP-WAR,PPP-AR,and PPP-RTK can reach 92.6%,99.4%,and 99.7%respectively.The results using real kinematic data also show that tight PLs can be achieved when the observation conditions are good.
文摘Tree rings,with their special characteristics of precise dating,annual resolution,long time series and climate sensitivity,have been widely considered a useful proxy for past climate variations.
基金the National Natural Science Foundation of China(51827806)the National Key Research and Development Program of China(2016YFB0501201).
文摘Optical measurement systems suffer from a fundamental tradeoff between the field of view(FOV),the resolution and the update rate.A compound eye has the advantages of a wide FOV,high update rate and high sensitivity to motion,providing inspiration for breaking through the constraint and realizing high-performance optical systems.However,most existing studies on artificial compound eyes are limited by complex structure and low resolution,and they focus on imaging instead of precise measurement.Here,a high-performance lensless compound eye microsystem is developed to realize target motion perception through precise and fast orientation measurement.The microsystem splices multiple sub-FOVs formed by long-focal subeyes,images targets distributed in a panoramic range into a single multiplexing image sensor,and codes the subeye aperture array for distinguishing the targets from different sub-FOVs.A wide-field and high resolution are simultaneously realized in a simple and easy-to-manufacture microelectromechanical system(MEMS)aperture array.Moreover,based on the electronic rolling shutter technique of the image sensor,a hyperframe update rate is achieved by the precise measurement of multiple time-shifted spots of one target.The microsystem achieves an orientation measurement accuracy of 0.0023°(3σ)in the x direction and 0.0028°(3σ)in the y direction in a cone FOV of 120°with an update rate~20 times higher than the frame rate.This study provides a promising approach for achieving optical measurements with comprehensive high performance and may have great significance in various applications,such as vision-controlled directional navigation and high-dynamic target tracking,formation and obstacle avoidance of unmanned aerial vehicles.
基金National Natural Science Foundation of China[41974027]Sino-German mobility programme[M-0054].
文摘In recent years,the large Low Earth Orbit(LEO)constellations have become a hot topic due to their great potential to improve the Global Navigation Satellite Systems(GNSS)positioning performance.One of the important focus is how to obtain the accurate and reliable orbits for these constellations with dozens of LEO satellites.The GNSS-based Precise Orbit Determination(POD)will be exclusively performed to achieve this goal,where the Integer Ambiguity Resolution(IAR)plays a key role in acquiring high-quality orbits.In this study,we present a comprehensive analysis of the benefit of the single-receiver IAR in LEO POD and discuss its implication for the future LEO constellations.We perform ambiguity-fixed LEO POD for four typical missions,including Gravity Recovery and Climate Experiment(GRACE)Follow-On(GRACE-FO),Swarm,Jason-3 and Sentinel-3,using the Uncalibrated Phase Delay(UPD)products generated by our GREAT(GNSS+REsearch,Application and Teaching)software.The results show that the ambiguity fixing processing can significantly improve the accuracy of LEO orbits.There are negligible differences between our UPD-based ambiguity-fixed orbits and those based on the Observable Signal Bias(OSB)and Integer Recovery Clock(IRC)products,indicating the good-quality of UPD products we generated.Compared to the float solution,the fixed solution presents a better consistency with the external precise science orbits and the largest accuracy improvement of 5 mm is achieved for GRACE-FO satellites.Meanwhile,the benefit can be observed in laser ranging residuals as well,with a Standard Deviation(STD)reduction of 3–4 mm on average for the fixed solutions.Apart from the absolute orbits,the relative accuracy of the space baseline is also improved by 20–30%in the fixed solutions.The result demonstrates the superior performance of the ambiguity-fixed LEO POD,which appears as a particularly promising technique for POD of future LEO constellations.