Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-dev...Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.展开更多
Experiments and analyses are carried out for GEO and joint GEO/IGSO precise orbit determination using data recorded by China's regional tracking network.Results show that joint GEO/IGSO orbit determination effecti...Experiments and analyses are carried out for GEO and joint GEO/IGSO precise orbit determination using data recorded by China's regional tracking network.Results show that joint GEO/IGSO orbit determination effectively solves the problem of poor observation geometry for GEO satellites.The laser radial evaluation thus confirms that precision is as good as less than 0.1 m.In the case of joint orbit determination,solving the empirical acceleration can reduce errors introduced by the imprecise solar radiation pressure model used for Chinese satellites.This method also improves the accuracy of orbit prediction in the radial direction.The ephemeris accuracy is thus improved and the ephemeris can provide a better service to users with navigation and positioning requirements.展开更多
The GPS,DORIS,and SLR instruments are installed on Haiyang 2A(HY2A)altimetry satellite for Precise Orbit Determination(POD).Among these instruments,the codeless GPS receiver is the state-of-art Chinese indigenous onbo...The GPS,DORIS,and SLR instruments are installed on Haiyang 2A(HY2A)altimetry satellite for Precise Orbit Determination(POD).Among these instruments,the codeless GPS receiver is the state-of-art Chinese indigenous onboard receiver,and it is the first one successfully used for Low Earth Orbit(LEO)satellite.Firstly,the contribution assesses the performance of the receiver through an analysis of data integrity,numbers of all tracked and valid measurements as well as multipath errors.The receiver generally shows good performance and quality despite a few flaws.For example,L2 observations are often missing in low elevations,particularly during the ascent of GPS satellites,and the multipath errors of P1 show a slightly abnormal pattern.Secondly,the PCO(Phase Center Offset)and PCV(Phase Center Variation)of the antenna of the GPS receiver are determined in this contribution.A significant leap for Z-component of PCO up to-1.2 cm has been found on 10 October 2011.Thirdly,the obtained PCO and PCV maps are used for GPS only POD solutions.The post-fit residuals of ionosphere-free phase combinations reduce almost 50%,and the radial orbit differences with respect to CNES(Centre National d’Etudes Spatiales)Precise Orbit Ephemeris(POEs)improve about 13.9%.The orbits are validated using the SLR data,and the RMS of SLR Observed minus Computed(O-C)residuals reduces from 17.5 to 15.9 mm.These improvements are with respect to the orbits determined without PCO and PCV.Fourthly,six types of solutions are determined for HY2A satellite using different combinations of GPS,DORIS,and SLR data.Statistics of SLR O-C residuals and cross-comparison of orbits obtained in the contribution and the CNES POEs indicate that the radial accuracy of these orbits is at the 1.0 cm level for HY2A orbit solutions,which is much better than the scientific requirements of this mission.It is noticed that the GPS observations dominate the achievable accuracy of POD,and the combination of multiple types of observations can reduce orbit errors caused by data gaps 展开更多
Within the framework of diferential augmentation,this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System(BDS-3)Satellite-Based Augmentation System(BDSBAS),i...Within the framework of diferential augmentation,this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System(BDS-3)Satellite-Based Augmentation System(BDSBAS),including orbit products,satellite clock ofset products,ionosphere and its integrity performance.The basic principle of BDS-3 Precise Point Positioning(PPP-B2b)is expounded,the similarities and diferences between the PPP service provided by BDS-3 and International Global Navigation Satellite System(GNSS)Service(IGS)are discussed,and the limitations of PPP-B2b are analyzed.Since both the BDSBAS and PPP-B2b utilize a ground monitoring station network to determine the satellite orbits and clock ofset corrections,and broadcast diferential corrections through the three Geostationary Orbit(GEO)satellites of BDS-3,the feasibility of the co-construction of BDSBAS and PPP-B2b is analyzed,strategies for the infrastructure sharing and correction broadcasting are presented,and the infuences of BDSBAS correction broadcasting strategy adjustment are evaluated.In addition,it assesses the possibility of broadcasting diferential corrections through the Inclined Geosynchronous Orbit(IGSO)satellites of BDS-3,and the feasibility of augmenting satellite navigation with Low Earth Orbit(LEO)satellites.展开更多
Global navigation satellite system occultation sounder (GNOS) Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the e...Global navigation satellite system occultation sounder (GNOS) Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the enhancement results of low earth orbiter satellite (LEO) to BDS precise orbit determination (POD). First the data characteristic and code observation noise of GNOS are analyzed. Then the enhancement experiments in the case of global and regional ground observation stations layout are processed with four POD schemes: BDS single system, GPS/BDS double system, BDS single system with GNOS observations, GPS/BDS double system with GNOS observations. The precision of BDS orbits and clocks are compared via overlapping arcs. Results show that in the case of global station layout the along directional precision of GEO satellite has the biggest improvement, with the improvement percentage 60%. Then the precision of cross direction and the along direction of remaining satellites shows the second biggest improvement. The orbit precision of BDS-only POD in part of observation arcs some satellite even suffers a slight decline. The root mean square (RMS) of overlapping clock difference of visible arcs in GPS/BDS POD experiments improves by 0.1 ns level. As to the experiments of regional station layout with 7 ground stations, the orbit and clock overlapping precision and orbit predicting precision are analyzed. Results show that the predicting precision of BDS GEO satellites in the along direction improves by 85%. The remaining also has a substantial improvement, with the average percentage 21.7%. RMS of overlapping clock difference of visible arcs improves by 0.5 ns level.展开更多
To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodeti...To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodetic SpatioTemporal data Analysis and Research software(GSTAR).Most of the modules in the GSTAR are coded in C++with object-oriented programming.The layered modular theory is adopted for the design of the software,and the antenna-based data architecture is proposed for users to construct personalized geodetic application scenarios easily.The initial performance of the GSTAR software is evaluated by processing the Global Navigation Satellite System(GNSS)data collected from 315 globally distributed stations over two and a half years.The accuracy of GNSS-based geodetic products is evaluated by comparing them with those released by International GNSS Service(IGS)Analysis Centers(AC).Taking the products released by European Space Agency(ESA)as reference,the Three-Dimension(3D)Root-Mean-Squares(RMS)of the orbit differences are 2.7/6.7/3.3/7.7/21.0 cm and the STandard Deviations(STD)of the clock differences are 19/48/16/32/25 ps for Global Positioning System(GPS),GLObal NAvigation Satellite System(GLONASS),Galileo navigation satellite system(Galileo),BeiDou Navigation Satellite System(BDS),Medium Earth Orbit(MEO),and BDS Inclined Geo-Synchronous Orbit(IGSO)satellites,respectively.The mean values of the X and Y components of the polar coordinate and the Length of Day(LOD)with respect to the International Earth Rotation and Reference Systems Service(IERS)14 C04 products are-17.6 microarc-second(μas),9.2μas,and 14.0μs/d.Compared to the IGS daily solution,the RMSs of the site position differences in the north/east/up direction are 1.6/1.5/3.9,3.8/2.4/7.6,2.5/2.4/7.9 and 2.7/2.3/7.4 mm for GPS-only,GLONASS-only,Galileo-only,and BDS-only solution,respectively.The RMSs of the differences of the tropospheric Zenith Path Delay(ZPD),the north gradients,and the east gradients are 5.8,0.9,and 0.9 mm with respect to the展开更多
Solar radiation pressure(SRP)model is the basis of high precise orbit determination and positioning of navigation satellites.At present,it is common to see the study of SRP model of BDS satellites.However,the establis...Solar radiation pressure(SRP)model is the basis of high precise orbit determination and positioning of navigation satellites.At present,it is common to see the study of SRP model of BDS satellites.However,the establishment and application of a comprehensive analytical SRP model based on satellite physical parameters are rare.Different from other conservative forces and non-conservative forces,SRP is closely related to the satellite’s physical parameters and in-orbit state.On the basis of the physical mechanism of solar radiation,BDS satellite physical parameters,in-orbit attitude control mode,and so on,a comprehensive analytical model has been studied in this paper.Based on precise ephemeris and satellite laser ranging(SLR)data,the precision of a comprehensive analytical model has been verified.And the precision of orbit determination is at the decimeter level using this comprehensive analytical SRP model.According to the satellite conservation theorem of angular momentum and change of in-orbit telemetry parameters,the difference between a comprehensive analytical model and the actual in-orbit interference force has been analyzed and calculated.The addition of empirical items on the comprehensive analytical model has been proposed.SLR validations demonstrated that the orbit precision of BDS C08 and C10 can be achieved at 0.078 m and 0.084 m respectively.Compared with using the improved CODE empirical model,precision orbit accuracy of them has increased by 0.021 m and 0.045 m respectively.展开更多
The Satellite Positioning and Orbit Determination System(SPODS)is a software package for GNSS positioning/orbit determination,developed by the Xi’an Research Institute of Surveying and Mapping.So far it has been able...The Satellite Positioning and Orbit Determination System(SPODS)is a software package for GNSS positioning/orbit determination,developed by the Xi’an Research Institute of Surveying and Mapping.So far it has been able to analyse GPS data and has the capability of high precision GPS positioning and orbit determination.The underlying theory and the performance evaluation are briefly addressed in this paper.The experiments are carried out with GPS data collected from about 127 IGS stations during 4~10 January 2009.The results show that the RMS 1D difference is 1.1 cm between SPODS orbits and final IGS combined orbits,and that the repeatability of daily solutions of station coordinates is 1.5 mm for horizontal components,and 4.5 mm for vertical component,and that the consistency of ERP solutions with IGS final products is 0.025 mas,0.093 mas and 0.013 ms/d respectively for pole coordinates and LOD.展开更多
文摘Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.
基金supported by the National Natural Science Foundation of China (Grant No.41074020)
文摘Experiments and analyses are carried out for GEO and joint GEO/IGSO precise orbit determination using data recorded by China's regional tracking network.Results show that joint GEO/IGSO orbit determination effectively solves the problem of poor observation geometry for GEO satellites.The laser radial evaluation thus confirms that precision is as good as less than 0.1 m.In the case of joint orbit determination,solving the empirical acceleration can reduce errors introduced by the imprecise solar radiation pressure model used for Chinese satellites.This method also improves the accuracy of orbit prediction in the radial direction.The ephemeris accuracy is thus improved and the ephemeris can provide a better service to users with navigation and positioning requirements.
基金supported by the National Natural Science Foundation of China(Grant No.41231174)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center(Grant No.2012PNT06)the Fundamental Research Funds for the Central Universities of China(Grand No.2012618020201)
文摘The GPS,DORIS,and SLR instruments are installed on Haiyang 2A(HY2A)altimetry satellite for Precise Orbit Determination(POD).Among these instruments,the codeless GPS receiver is the state-of-art Chinese indigenous onboard receiver,and it is the first one successfully used for Low Earth Orbit(LEO)satellite.Firstly,the contribution assesses the performance of the receiver through an analysis of data integrity,numbers of all tracked and valid measurements as well as multipath errors.The receiver generally shows good performance and quality despite a few flaws.For example,L2 observations are often missing in low elevations,particularly during the ascent of GPS satellites,and the multipath errors of P1 show a slightly abnormal pattern.Secondly,the PCO(Phase Center Offset)and PCV(Phase Center Variation)of the antenna of the GPS receiver are determined in this contribution.A significant leap for Z-component of PCO up to-1.2 cm has been found on 10 October 2011.Thirdly,the obtained PCO and PCV maps are used for GPS only POD solutions.The post-fit residuals of ionosphere-free phase combinations reduce almost 50%,and the radial orbit differences with respect to CNES(Centre National d’Etudes Spatiales)Precise Orbit Ephemeris(POEs)improve about 13.9%.The orbits are validated using the SLR data,and the RMS of SLR Observed minus Computed(O-C)residuals reduces from 17.5 to 15.9 mm.These improvements are with respect to the orbits determined without PCO and PCV.Fourthly,six types of solutions are determined for HY2A satellite using different combinations of GPS,DORIS,and SLR data.Statistics of SLR O-C residuals and cross-comparison of orbits obtained in the contribution and the CNES POEs indicate that the radial accuracy of these orbits is at the 1.0 cm level for HY2A orbit solutions,which is much better than the scientific requirements of this mission.It is noticed that the GPS observations dominate the achievable accuracy of POD,and the combination of multiple types of observations can reduce orbit errors caused by data gaps
基金supported by the National Natural Science Foundation of China(No.41931076)the National Key Research and Development Program of China(No.2020YFB0505802)the Wenhai Program of Qingdao National Laboratory for Marine Science and Technology(QNLM)(No.2021WHZZB1005).
文摘Within the framework of diferential augmentation,this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System(BDS-3)Satellite-Based Augmentation System(BDSBAS),including orbit products,satellite clock ofset products,ionosphere and its integrity performance.The basic principle of BDS-3 Precise Point Positioning(PPP-B2b)is expounded,the similarities and diferences between the PPP service provided by BDS-3 and International Global Navigation Satellite System(GNSS)Service(IGS)are discussed,and the limitations of PPP-B2b are analyzed.Since both the BDSBAS and PPP-B2b utilize a ground monitoring station network to determine the satellite orbits and clock ofset corrections,and broadcast diferential corrections through the three Geostationary Orbit(GEO)satellites of BDS-3,the feasibility of the co-construction of BDSBAS and PPP-B2b is analyzed,strategies for the infrastructure sharing and correction broadcasting are presented,and the infuences of BDSBAS correction broadcasting strategy adjustment are evaluated.In addition,it assesses the possibility of broadcasting diferential corrections through the Inclined Geosynchronous Orbit(IGSO)satellites of BDS-3,and the feasibility of augmenting satellite navigation with Low Earth Orbit(LEO)satellites.
基金The National Natural Science Foundation of China (41674016,41274016,41604024).
文摘Global navigation satellite system occultation sounder (GNOS) Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the enhancement results of low earth orbiter satellite (LEO) to BDS precise orbit determination (POD). First the data characteristic and code observation noise of GNOS are analyzed. Then the enhancement experiments in the case of global and regional ground observation stations layout are processed with four POD schemes: BDS single system, GPS/BDS double system, BDS single system with GNOS observations, GPS/BDS double system with GNOS observations. The precision of BDS orbits and clocks are compared via overlapping arcs. Results show that in the case of global station layout the along directional precision of GEO satellite has the biggest improvement, with the improvement percentage 60%. Then the precision of cross direction and the along direction of remaining satellites shows the second biggest improvement. The orbit precision of BDS-only POD in part of observation arcs some satellite even suffers a slight decline. The root mean square (RMS) of overlapping clock difference of visible arcs in GPS/BDS POD experiments improves by 0.1 ns level. As to the experiments of regional station layout with 7 ground stations, the orbit and clock overlapping precision and orbit predicting precision are analyzed. Results show that the predicting precision of BDS GEO satellites in the along direction improves by 85%. The remaining also has a substantial improvement, with the average percentage 21.7%. RMS of overlapping clock difference of visible arcs improves by 0.5 ns level.
基金This work was sponsored by National Natural Science Foundation of China(Grant No.41931075,42274041).
文摘To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodetic SpatioTemporal data Analysis and Research software(GSTAR).Most of the modules in the GSTAR are coded in C++with object-oriented programming.The layered modular theory is adopted for the design of the software,and the antenna-based data architecture is proposed for users to construct personalized geodetic application scenarios easily.The initial performance of the GSTAR software is evaluated by processing the Global Navigation Satellite System(GNSS)data collected from 315 globally distributed stations over two and a half years.The accuracy of GNSS-based geodetic products is evaluated by comparing them with those released by International GNSS Service(IGS)Analysis Centers(AC).Taking the products released by European Space Agency(ESA)as reference,the Three-Dimension(3D)Root-Mean-Squares(RMS)of the orbit differences are 2.7/6.7/3.3/7.7/21.0 cm and the STandard Deviations(STD)of the clock differences are 19/48/16/32/25 ps for Global Positioning System(GPS),GLObal NAvigation Satellite System(GLONASS),Galileo navigation satellite system(Galileo),BeiDou Navigation Satellite System(BDS),Medium Earth Orbit(MEO),and BDS Inclined Geo-Synchronous Orbit(IGSO)satellites,respectively.The mean values of the X and Y components of the polar coordinate and the Length of Day(LOD)with respect to the International Earth Rotation and Reference Systems Service(IERS)14 C04 products are-17.6 microarc-second(μas),9.2μas,and 14.0μs/d.Compared to the IGS daily solution,the RMSs of the site position differences in the north/east/up direction are 1.6/1.5/3.9,3.8/2.4/7.6,2.5/2.4/7.9 and 2.7/2.3/7.4 mm for GPS-only,GLONASS-only,Galileo-only,and BDS-only solution,respectively.The RMSs of the differences of the tropospheric Zenith Path Delay(ZPD),the north gradients,and the east gradients are 5.8,0.9,and 0.9 mm with respect to the
文摘Solar radiation pressure(SRP)model is the basis of high precise orbit determination and positioning of navigation satellites.At present,it is common to see the study of SRP model of BDS satellites.However,the establishment and application of a comprehensive analytical SRP model based on satellite physical parameters are rare.Different from other conservative forces and non-conservative forces,SRP is closely related to the satellite’s physical parameters and in-orbit state.On the basis of the physical mechanism of solar radiation,BDS satellite physical parameters,in-orbit attitude control mode,and so on,a comprehensive analytical model has been studied in this paper.Based on precise ephemeris and satellite laser ranging(SLR)data,the precision of a comprehensive analytical model has been verified.And the precision of orbit determination is at the decimeter level using this comprehensive analytical SRP model.According to the satellite conservation theorem of angular momentum and change of in-orbit telemetry parameters,the difference between a comprehensive analytical model and the actual in-orbit interference force has been analyzed and calculated.The addition of empirical items on the comprehensive analytical model has been proposed.SLR validations demonstrated that the orbit precision of BDS C08 and C10 can be achieved at 0.078 m and 0.084 m respectively.Compared with using the improved CODE empirical model,precision orbit accuracy of them has increased by 0.021 m and 0.045 m respectively.
文摘The Satellite Positioning and Orbit Determination System(SPODS)is a software package for GNSS positioning/orbit determination,developed by the Xi’an Research Institute of Surveying and Mapping.So far it has been able to analyse GPS data and has the capability of high precision GPS positioning and orbit determination.The underlying theory and the performance evaluation are briefly addressed in this paper.The experiments are carried out with GPS data collected from about 127 IGS stations during 4~10 January 2009.The results show that the RMS 1D difference is 1.1 cm between SPODS orbits and final IGS combined orbits,and that the repeatability of daily solutions of station coordinates is 1.5 mm for horizontal components,and 4.5 mm for vertical component,and that the consistency of ERP solutions with IGS final products is 0.025 mas,0.093 mas and 0.013 ms/d respectively for pole coordinates and LOD.