We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot (QD) ring, which is introduced as Rashba spin-orbital interaction to act locally on one component ...We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot (QD) ring, which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot. It is found that the electronic current and spin current are sensitive to the systematic parameters. The interdot spin-flip term does not play a leading role in causing electronic and spin currents. Otherwise the spin precessing terra leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current. Moreover, the spin-orbital interaction suppresses the nonlocal Andreev reflection, so we cannot obtain the pure spin current.展开更多
基金Project supported by the Natural Science Foundation of Education Bureau of Jiangsu Province of China (Grant Nos. 08KJB140002 and 09KJD430004)
文摘We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot (QD) ring, which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot. It is found that the electronic current and spin current are sensitive to the systematic parameters. The interdot spin-flip term does not play a leading role in causing electronic and spin currents. Otherwise the spin precessing terra leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current. Moreover, the spin-orbital interaction suppresses the nonlocal Andreev reflection, so we cannot obtain the pure spin current.