为实现用户仪表数据的远程采集和集中管理,设计了一种基于仪表总线(meter-bus,M-bus)、小功率无线及通用分组无线服务(general packet radio service,GPRS)技术的远程抄表管理系统。该系统满足热能表和电能表等一系列电力仪表及其他智...为实现用户仪表数据的远程采集和集中管理,设计了一种基于仪表总线(meter-bus,M-bus)、小功率无线及通用分组无线服务(general packet radio service,GPRS)技术的远程抄表管理系统。该系统满足热能表和电能表等一系列电力仪表及其他智能仪表的远程抄表要求,系统数据采集过程按传输方式分为三层:底层采用Mbus技术读取仪表数据;中间层利用小区内的小功率无线自组织网络将仪表数据传输至集中器;上层通过集中器的GPRS接入互联网,将数据传输至服务器,最后在服务器建立网站,实现仪表数据的管理。投入实际生产环境后,该系统运行稳定,满足设计需求。展开更多
We compare Balmer-alpha (Ha) and Balmer-beta (Hβ) emissions from high-power (1.0-6.0 kW) hydrogen inductively coupled plasmas (ICPs), and propose region Ⅰ (0.0-2.0 kW), region Ⅱ (2.0-5.0 kW), and region...We compare Balmer-alpha (Ha) and Balmer-beta (Hβ) emissions from high-power (1.0-6.0 kW) hydrogen inductively coupled plasmas (ICPs), and propose region Ⅰ (0.0-2.0 kW), region Ⅱ (2.0-5.0 kW), and region Ⅲ (5.0-6.0 kW). In region Ⅰ, both Ha emission intensity (la) and Hβ emission intensity (1β) increase with radio frequency (RF) power, which is explained by the corona model and Boltzmann's law, etc. However, in region II, la almost remains constant while 1β rapidly achieves its maximum value. In region Ⅲ, 1α slightly increases with RF power, while 1β decreases with RF power, which deviates significantly from the theoretical explanation for the Ha and Hβ emissions in region I. It is suggested that two strong electric fields are generated in high-power (2.0-6.0 kW) hydrogen ICPs: one is due to the external electric field of high-power RF discharge, and the other one is due to the micro electric field of the ions and electrons around the exited state hydrogen atoms in ICPs. Therefore, the strong Stark effect can play an important role in explaining the experimental results.展开更多
文摘为实现用户仪表数据的远程采集和集中管理,设计了一种基于仪表总线(meter-bus,M-bus)、小功率无线及通用分组无线服务(general packet radio service,GPRS)技术的远程抄表管理系统。该系统满足热能表和电能表等一系列电力仪表及其他智能仪表的远程抄表要求,系统数据采集过程按传输方式分为三层:底层采用Mbus技术读取仪表数据;中间层利用小区内的小功率无线自组织网络将仪表数据传输至集中器;上层通过集中器的GPRS接入互联网,将数据传输至服务器,最后在服务器建立网站,实现仪表数据的管理。投入实际生产环境后,该系统运行稳定,满足设计需求。
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2011GB108011 and 2010GB103001)the MajorInternational(Regional)Project Cooperation and Exchanges(Grant No.11320101005)
文摘We compare Balmer-alpha (Ha) and Balmer-beta (Hβ) emissions from high-power (1.0-6.0 kW) hydrogen inductively coupled plasmas (ICPs), and propose region Ⅰ (0.0-2.0 kW), region Ⅱ (2.0-5.0 kW), and region Ⅲ (5.0-6.0 kW). In region Ⅰ, both Ha emission intensity (la) and Hβ emission intensity (1β) increase with radio frequency (RF) power, which is explained by the corona model and Boltzmann's law, etc. However, in region II, la almost remains constant while 1β rapidly achieves its maximum value. In region Ⅲ, 1α slightly increases with RF power, while 1β decreases with RF power, which deviates significantly from the theoretical explanation for the Ha and Hβ emissions in region I. It is suggested that two strong electric fields are generated in high-power (2.0-6.0 kW) hydrogen ICPs: one is due to the external electric field of high-power RF discharge, and the other one is due to the micro electric field of the ions and electrons around the exited state hydrogen atoms in ICPs. Therefore, the strong Stark effect can play an important role in explaining the experimental results.