Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),f...Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.展开更多
设计了应用于改善电网电能质量场景下飞轮储能系统的双层结构能量管理系统,其中能量管理系统的上层——决策管理层利用模糊算法,考虑飞轮储能系统状态和平抑风电功率波动需求来确定飞轮储能装置的充放电功率参考值,下层——调度控制层...设计了应用于改善电网电能质量场景下飞轮储能系统的双层结构能量管理系统,其中能量管理系统的上层——决策管理层利用模糊算法,考虑飞轮储能系统状态和平抑风电功率波动需求来确定飞轮储能装置的充放电功率参考值,下层——调度控制层通过双环控制背靠背双PWM变流器实现飞轮储能与电网间的功率交换。在Matlab/Simulink下仿真分析飞轮储能的运行状态和比较风电场采用飞轮储能调节有功功率前后的公共连接点(point of common coupling,PCC)处电压波动,仿真结果验证了飞轮储能系统能量管理系统的有效性,可提高储能装置的利用效率,改善电能质量。展开更多
文摘Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.
文摘设计了应用于改善电网电能质量场景下飞轮储能系统的双层结构能量管理系统,其中能量管理系统的上层——决策管理层利用模糊算法,考虑飞轮储能系统状态和平抑风电功率波动需求来确定飞轮储能装置的充放电功率参考值,下层——调度控制层通过双环控制背靠背双PWM变流器实现飞轮储能与电网间的功率交换。在Matlab/Simulink下仿真分析飞轮储能的运行状态和比较风电场采用飞轮储能调节有功功率前后的公共连接点(point of common coupling,PCC)处电压波动,仿真结果验证了飞轮储能系统能量管理系统的有效性,可提高储能装置的利用效率,改善电能质量。