The chalcopyrite anode dissolution behavior in the presence or absence of bacteria in 9 K media using bacteria modified powder microelectrode at 30 ℃ was studied. It is found that during the anode dissolution, many i...The chalcopyrite anode dissolution behavior in the presence or absence of bacteria in 9 K media using bacteria modified powder microelectrode at 30 ℃ was studied. It is found that during the anode dissolution, many intermediate transient reactions occur accompanying with the production of chalcocite and covellite at potential between - 0.075 V and - 0.025 V (vs SCE). At low scanning potentialbetween - 0.1 and - 0.250 V, the iron ion is released in ferrous form, but at the relative high potentialup to 0.7 V, it is the ferric one. The presence of Thiobacillus ferrooxidans makes peak current increase and the initial peak potential negatively move, hinting the decomposed oxidation reaction easily occurred and especially the iron ion released and ferrous oxidation reaction enhanced. The characteristic at potential between - 0.75 and - 0.5 V demonstrates the Thiobacillus ferrooxidans also contributes to the element sulfur formed on the oxidation surface and removed during anode process. The added ferric in the cell could enhance the dissolution reaction, while the increased acid under pH=2 might slightly hamper the process. The anode dissolution kinetics studies show that the presence of bacteria could decease corrosion potential from 0.238 V to 0.184 V and increase the corrosion current density from 1.632 14×10- A/cm2 to 2.374 11×10- A/cm2.展开更多
基金Project(2004CB619205) supported by the National Basic Research Program of China Project(50204001) supported by the National Natural Science Foundationof China
文摘The chalcopyrite anode dissolution behavior in the presence or absence of bacteria in 9 K media using bacteria modified powder microelectrode at 30 ℃ was studied. It is found that during the anode dissolution, many intermediate transient reactions occur accompanying with the production of chalcocite and covellite at potential between - 0.075 V and - 0.025 V (vs SCE). At low scanning potentialbetween - 0.1 and - 0.250 V, the iron ion is released in ferrous form, but at the relative high potentialup to 0.7 V, it is the ferric one. The presence of Thiobacillus ferrooxidans makes peak current increase and the initial peak potential negatively move, hinting the decomposed oxidation reaction easily occurred and especially the iron ion released and ferrous oxidation reaction enhanced. The characteristic at potential between - 0.75 and - 0.5 V demonstrates the Thiobacillus ferrooxidans also contributes to the element sulfur formed on the oxidation surface and removed during anode process. The added ferric in the cell could enhance the dissolution reaction, while the increased acid under pH=2 might slightly hamper the process. The anode dissolution kinetics studies show that the presence of bacteria could decease corrosion potential from 0.238 V to 0.184 V and increase the corrosion current density from 1.632 14×10- A/cm2 to 2.374 11×10- A/cm2.