A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and th...A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and the mould for making a 292 t steel ingot. Firstly, the fluid flow as well as the heat and mass transfer of the molten steel in the tundish is simulated based on the multiphase transient turbulence model. Then, the carbon mixing in the mould is calculated by using the species concentration at the tundish outlet as the inlet condition during the teeming process. The results show a high concentration of carbon at the bottom and a low concentration of carbon at the top of the mould after a MP process with carbon content high in the first ladle and low in the last ladle. Such carbon concentration distribution would help reduce the negative segregation at the bottom and the positive segregation at the top of the solidified ingot.展开更多
Steel teeming time is a very important parameter in the new slide gate system with electromagnetic induction (called electromagnetic steel teeming system), and how to shorten this time is a key to realize applicatio...Steel teeming time is a very important parameter in the new slide gate system with electromagnetic induction (called electromagnetic steel teeming system), and how to shorten this time is a key to realize application of the new system in continuous casting. The effects of power parameters, coil position, nozzle material and other factors on the steel teeming time were investigated by a self-designed electromagnetic steel teeming system in detail. The experimental results show that the relationship between power and steel teeming time is nonlinear. The coil position has great in- fluence on steel teeming time. And the upper nozzle with high permeability can reduce the teeming time. In addition, the steel teeming time becomes minimum when the size of the spherical cast iron particles is 2.0 ram. This research can provide technical references for the industrial application of the new electromagnetic steel teeming system.展开更多
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee...In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.展开更多
基金financially supported by the National Basic Research Program of China(No.2011CB012900)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2012ZX04012011)
文摘A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and the mould for making a 292 t steel ingot. Firstly, the fluid flow as well as the heat and mass transfer of the molten steel in the tundish is simulated based on the multiphase transient turbulence model. Then, the carbon mixing in the mould is calculated by using the species concentration at the tundish outlet as the inlet condition during the teeming process. The results show a high concentration of carbon at the bottom and a low concentration of carbon at the top of the mould after a MP process with carbon content high in the first ladle and low in the last ladle. Such carbon concentration distribution would help reduce the negative segregation at the bottom and the positive segregation at the top of the solidified ingot.
基金Sponsored by Science and Techonlogy Program of Liaoning Province of China(2008221015)
文摘Steel teeming time is a very important parameter in the new slide gate system with electromagnetic induction (called electromagnetic steel teeming system), and how to shorten this time is a key to realize application of the new system in continuous casting. The effects of power parameters, coil position, nozzle material and other factors on the steel teeming time were investigated by a self-designed electromagnetic steel teeming system in detail. The experimental results show that the relationship between power and steel teeming time is nonlinear. The coil position has great in- fluence on steel teeming time. And the upper nozzle with high permeability can reduce the teeming time. In addition, the steel teeming time becomes minimum when the size of the spherical cast iron particles is 2.0 ram. This research can provide technical references for the industrial application of the new electromagnetic steel teeming system.
文摘In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.