Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium-sulfur(Li-S)batteries.The reactions between dissolved higher-order polysulfides and Li metal were found to be the o...Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium-sulfur(Li-S)batteries.The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li-S pouch cells.16-cycle pouch cell indicates high safety,heating from 30 to 300 ℃ without thermal runaway,while 16-cycle pouch cell with additional electrolyte undergoes severe thermal runaway at 147.9 ℃,demonstrating the key roles of the electrolyte on the thermal safety of batteries.On the contrary,thermal runaway does not occur for 45-cycle pouch cell despite the addition of the electrolyte.It is found that the higher-order polysulfides(Li_(2)S_(x) ≥ 6)are discovered in 16-cycle electrolyte while the sulfur species in 45-cycle electrolyte are Li_(2)S_(x) ≤ 4.In addition,strong exothermic reactions are discovered between cycled Li and dissolved higher-order polysulfide(Li_(2)S_(6) and Li_(2)S_(8))at 153.0 ℃,driving the thermal runaway of cycled Li-S pouch cells.This work uncovers the potential safety risks of Li-S batteries and negative roles of the polysulfide shuttle for Li-S batteries from the safety view.展开更多
为了研究硬壳和软包磷酸铁锂单体电池过充对周围电池的热辐射影响,对磷酸铁锂软包和硬壳电池在仅单体、两单体电池紧贴和两单体电池相距1 cm 3种工况下的热传播行为进行分析。实验以充电倍率0.5 C的恒定电流分别对48 A·h的软包电池...为了研究硬壳和软包磷酸铁锂单体电池过充对周围电池的热辐射影响,对磷酸铁锂软包和硬壳电池在仅单体、两单体电池紧贴和两单体电池相距1 cm 3种工况下的热传播行为进行分析。实验以充电倍率0.5 C的恒定电流分别对48 A·h的软包电池和24 A·h的硬壳电池进行过充,利用可见光监控、红外监控、多路温度记录仪分别对电池外部形貌、外部温度和表面温度变化进行实时监测。研究表明,过充阶段,硬壳过充电池温升65.5℃,平均温升速率0.0392℃/s;软包过充电池温升57.3℃,平均温升速率0.0143℃/s;相邻硬壳电池最高温升44℃,最大温升速率0.0312℃/s;相邻软包电池最高温升7.9℃,最高温升速率0.0063℃/s;软包电池过充后,产生的膨胀力对相邻电池影响更大,相邻电池产生的机械应力较大。实验结果可为研究模组内部硬壳或软包磷酸铁锂电池之间的热辐射影响提供理论和实验参考。展开更多
To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we re...To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we report the thermal behaviors of NCA/Si–C pouch cell during the charge/discharge processes at different current densities.The total heat generations are derived from the surface temperature change during electrochemical Li+insertion/extraction in adiabatic surrounding.The reversible heat is determined by the entropic coefficients,which are related with open-circuit voltage at different temperatures; while the irreversible heat is determined by the internal resistance,which can be obtained via V–I characteristic,electrochemical impedance spectroscopy and hybrid pulse power characterization(HPPC).During the electrochemical process,the reversible heat contributes less than 10% to total heat generation; and the heat generated in charge process is less than that in discharge process.The results of thermal behaviors analyses are conducive to understanding the safety management and paving the way for building a reliable thermal model of high energy density lithium ion battery.展开更多
Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active ma...Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demon- strated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (AI) foil current collectors. The interracial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113 mAh g-1 at 0.5 C, which is -300 mAh g-1 higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the AI/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O2 batteries, fuel cells, and flow batteries).展开更多
Lithium–sulfur(Li–S)batteries are considered as highly promising energy storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg^(-1).The highest practical energy density of Li–S batterie...Lithium–sulfur(Li–S)batteries are considered as highly promising energy storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg^(-1).The highest practical energy density of Li–S batteries reported at pouch cell level has exceeded 500 Wh kg^(-1),which significantly surpasses that of lithium-ion batteries.Herein,a 700 Wh kg^(-1)-level Li–S pouch cell is successfully constructed.The pouch cell is designed at 6 Ah level with high-sulfur-loading cathodes of 7.4 mgScm^(-2),limited anode excess(50μm in thickness),and lean electrolyte(electrolyte to sulfur ratio of 1.7 gelectrolyteg^(-1)S).Accordingly,an ultrahigh specific capacity of 1563 m A h g^(-1)is achieved with the addition of a redox comediator to afford a practical energy density of 695 Wh kg^(-1)based on the total mass of all components.The pouch cell can operate stably for three cycles and then failed due to rapidly increased polarization at the second discharge plateau.According to failure analysis,electrolyte exhaustion is suggested as the key limiting factor.This work achieves a significant breakthrough in constructing high-energy-density Li–S batteries and propels the development of Li–S batteries toward practical working conditions.展开更多
Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteri...Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteries. Herein, MoS2 is verified to reduce the Gibbs free energy for rate-limiting step of sulfur reduction and the dissociation energy of lithium sulfide(Li2 S) for the first time employing theoretical calculations. The Mo S2 nanosheets coated on mesoporous hollow carbon spheres(MHCS) are then reasonably designed as a sulfur host for high-capacity and long-life Li–S battery, in which MHCS can guarantee the high sulfur loading and fast electron/ion transfer. It is revealed that the shuttle effect is efficiently inhibited because of the boosted conversion of Li PSs. As a result, the coin cell based on the MHCS@Mo S2-S cathode exhibits stable cycling performance maintaining 735.7 mAh g^(-1) after 500 cycles at 1.0 C. More importantly, the pouch cell employing the MHCS@Mo S2-S cathodes achieves high specific capacity of1353.2 m Ah g^(-1) and prominent cycle stability that remaining 960.0 m Ah g^(-1) with extraordinary capacity retention of 79.8% at 0.1 C after 170 cycles. Therefore, this work paves a new avenue for developing practical high specific energy and long-life pouch-type Li–S batteries.展开更多
A quantitative relationship between safety issues and dendritic lithium(Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in p...A quantitative relationship between safety issues and dendritic lithium(Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 ℃ for Li foil to 111 ℃ for cycled Li.The initial exothermic temperature is reduced from 194 ℃ for routine Li foil to 142 ℃ for 49.5 m~2g^(-1) dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 ℃. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries.展开更多
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv...Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.展开更多
Elevating the charge cut-off voltage beyond traditional 4.2 V is a commonly accepted technology to increase the energy density of Li-ion batteries(LIBs) but the risk of Li-dendrites and fire hazard increases as well. ...Elevating the charge cut-off voltage beyond traditional 4.2 V is a commonly accepted technology to increase the energy density of Li-ion batteries(LIBs) but the risk of Li-dendrites and fire hazard increases as well. The use of ambi-functional additive, which forms stable solid electrolyte interphase(SEI) simultaneously at both cathode and anode, is a key to enabling a dendrites-free and well-working high-voltage LIB. Herein, a novel ambi-functional additive, pentaerythritol disulfate(PEDS), at 1 wt% without any other additive is demonstrated. We show the feasibility and high impacts of PEDS in forming lithium sulfateincorporated robust SEI layers at NCM523 cathode and graphite anode in 1 Ah-level pouch cell under4.4 V, 25 °C and 0.1 C rate, which mitigates the high-voltage instability, metal-dissolution and cracks on NCM523 particles, and prevents Li-dendrites at graphite anode. Improved capacity retention of 83%after 300 cycles is thereby achieved, with respect to 69% with base electrolyte, offering a promising path toward the design of practical high-energy LIBs.展开更多
Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first t...Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first time,that is,negative temperature coefficient thermosensitive Pr_(6)O_(11) nanoparticles are uniformly modified on LiCoO_(2) to prepare LiCoO_(2)@Pr_(6)O_(11)(LCO@PrO)via a liquid-phase mixing combined with annealing method.Tested at 274 mA g−1,the modified LCO@PrO electrodes deliver excellent 4.5 V high-voltage cycling performance with capacity retention ratios of 90.8%and 80.5%at 25 and 60℃,being much larger than those of 22.8%and 63.2%for bare LCO electrodes.Several effective strategies were used to clearly unveil the performance enhancement mechanism induced by Pr_(6)O_(11) modification.It is discovered that Pr_(6)O_(11) can improve interface compatibility,exhibit improved conductivity at elevated temperature,thus enhance the Li^(+)diffusion kinetics,and suppress the phase transformation of LCO and its resulting mechanical stresses.The 450 mAh LCO@PrO‖graphite pouch cells show excellent LIB performance and improved thermal safety characteristics.Importantly,the energy density of such pouch cell was increased even by~42%at 5 C.This extremely convenient technology is feasible for producing high-energy density LIBs with negligible cost increase,undoubtedly providing important academic inspiration for industrialization.展开更多
The lithium-sulfur(Li-S)technology is the most promising candidate for next-generation batteries due to its high theoretical specific energy and steady progress for applications requiring lightweight batteries such as...The lithium-sulfur(Li-S)technology is the most promising candidate for next-generation batteries due to its high theoretical specific energy and steady progress for applications requiring lightweight batteries such as aviation or heavy electric vehicles.For these applications,however,the rate capability of Li-S cells requires significant improvement.Advanced electrolyte formulations in Li-S batteries enable new pathways for cell development and adjustment of all components.However,their rate capability at pouch cell level is often neither evaluated nor compared to state of the art(SOTA)LiTFSI/dimethoxyethane/dioxolane(LITFSI:lithium-bis(trifluoromethylsulfonyl)imide)electrolyte.Herein,the combination of the sparingly polysulfide(PS)solvating hexylmethylether/1,2-dimethoxyethane(HME/DME)electrolyte and highly conductive carbon nanotube Buckypaper(CNT-BP)with low porosity was evaluated in both coin and pouch cells and compared to dimethoxyethane/dioxolane reference electrolyte.An advanced sulfur transfer melt infiltration was employed for cathode production with CNT-BP.The Li+ion coordination in the HME/DME electrolyte was investigated by nuclear magnetic resonance(NMR)and Raman spectroscopy.Additionally,ionic conductivity and viscosity was investigated for the pristine electrolyte and a polysulfide-statured solution.Both electrolytes,DME/DOL-1/1(DOL:1,3-dioxolane)and HME/DME-8/2,are then combined with CNT-BP and transferred to multi-layered pouch cells.This study reveals that the ionic conductivity of the electrolyte increases drastically over state of(dis)charge especially for DME/DOL electrolyte and lean electrolyte regime leading to a better rate capability for the sparingly polysulfide solvating electrolyte.The evaluation in prototype cells is an important step towards bespoke adaption of Li-S batteries for practical applications.展开更多
基金supported by the National Key Research and Development Program(grant No.2021YFB2500300)National Natural Science Foundation of China(grant Nos.22179070,22075029,U1932220)+2 种基金Beijing Municipal Natural Science Foundation(grant No.Z200011)the Natural Science Foundation of Jiangsu Province(grant No.BK20220073)the Fundamental Research Funds for the Central Universities(grant No.2242022R10082).
文摘Comprehensive analyses on thermal runaway mechanisms are critically vital to achieve the safe lithium-sulfur(Li-S)batteries.The reactions between dissolved higher-order polysulfides and Li metal were found to be the origins for the thermal runaway of 1.0 Ah cycled Li-S pouch cells.16-cycle pouch cell indicates high safety,heating from 30 to 300 ℃ without thermal runaway,while 16-cycle pouch cell with additional electrolyte undergoes severe thermal runaway at 147.9 ℃,demonstrating the key roles of the electrolyte on the thermal safety of batteries.On the contrary,thermal runaway does not occur for 45-cycle pouch cell despite the addition of the electrolyte.It is found that the higher-order polysulfides(Li_(2)S_(x) ≥ 6)are discovered in 16-cycle electrolyte while the sulfur species in 45-cycle electrolyte are Li_(2)S_(x) ≤ 4.In addition,strong exothermic reactions are discovered between cycled Li and dissolved higher-order polysulfide(Li_(2)S_(6) and Li_(2)S_(8))at 153.0 ℃,driving the thermal runaway of cycled Li-S pouch cells.This work uncovers the potential safety risks of Li-S batteries and negative roles of the polysulfide shuttle for Li-S batteries from the safety view.
基金supported by the National Key R&D Program of China:Trackling Key Technology for Development and Industrialization of Power Lithium Ion Battery with High Specific Energy (Grant No.2016YFB0100508)
文摘To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we report the thermal behaviors of NCA/Si–C pouch cell during the charge/discharge processes at different current densities.The total heat generations are derived from the surface temperature change during electrochemical Li+insertion/extraction in adiabatic surrounding.The reversible heat is determined by the entropic coefficients,which are related with open-circuit voltage at different temperatures; while the irreversible heat is determined by the internal resistance,which can be obtained via V–I characteristic,electrochemical impedance spectroscopy and hybrid pulse power characterization(HPPC).During the electrochemical process,the reversible heat contributes less than 10% to total heat generation; and the heat generated in charge process is less than that in discharge process.The results of thermal behaviors analyses are conducive to understanding the safety management and paving the way for building a reliable thermal model of high energy density lithium ion battery.
基金supported by National Key Research and Development Program of China (2016YFA0202500, 2015CB932500)the National Natural Science Foundation of China (21776019, 21422604)
文摘Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demon- strated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (AI) foil current collectors. The interracial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113 mAh g-1 at 0.5 C, which is -300 mAh g-1 higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the AI/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O2 batteries, fuel cells, and flow batteries).
基金supported by the National Key Research and Development Program(2021YFB2500300,2021YFB2400300)the Natural Scientific Foundation of China(22109007)+3 种基金the Beijing Natural Science Foundation(JQ20004)the Scientific and Technological Key Project of Shanxi Province(20191102003)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Lithium–sulfur(Li–S)batteries are considered as highly promising energy storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg^(-1).The highest practical energy density of Li–S batteries reported at pouch cell level has exceeded 500 Wh kg^(-1),which significantly surpasses that of lithium-ion batteries.Herein,a 700 Wh kg^(-1)-level Li–S pouch cell is successfully constructed.The pouch cell is designed at 6 Ah level with high-sulfur-loading cathodes of 7.4 mgScm^(-2),limited anode excess(50μm in thickness),and lean electrolyte(electrolyte to sulfur ratio of 1.7 gelectrolyteg^(-1)S).Accordingly,an ultrahigh specific capacity of 1563 m A h g^(-1)is achieved with the addition of a redox comediator to afford a practical energy density of 695 Wh kg^(-1)based on the total mass of all components.The pouch cell can operate stably for three cycles and then failed due to rapidly increased polarization at the second discharge plateau.According to failure analysis,electrolyte exhaustion is suggested as the key limiting factor.This work achieves a significant breakthrough in constructing high-energy-density Li–S batteries and propels the development of Li–S batteries toward practical working conditions.
基金supported by the funding from the Strategy Priority Research Program of Chinese Academy of Science (Grant No. XDA17020404)DICP&QIBEBT (DICP&QIBEBT UN201702)+8 种基金R&D Projects in Key Areas of Guangdong Province (2019B090908001)Science and Technology Innovation Foundation of Dalian (2018J11CY020)Defense Industrial Technology Development Program (JCKY2018130C107)National Natural Science Foundation of China (Grants 51872283)Liao Ning Revitalization Talents Program (Grant XLYC1807153)Natural Science Foundation of Liaoning Province (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802)DNL Cooperation FundCAS (DNL180310, DNL180308, DNL201912, and DNL201915)。
文摘Developing sulfur cathodes with high catalytic activity on accelerating the sluggish redox kinetics of lithium polysulfides(Li PSs) and unveiling their mechanisms are pivotal for advanced lithium–sulfur(Li–S)batteries. Herein, MoS2 is verified to reduce the Gibbs free energy for rate-limiting step of sulfur reduction and the dissociation energy of lithium sulfide(Li2 S) for the first time employing theoretical calculations. The Mo S2 nanosheets coated on mesoporous hollow carbon spheres(MHCS) are then reasonably designed as a sulfur host for high-capacity and long-life Li–S battery, in which MHCS can guarantee the high sulfur loading and fast electron/ion transfer. It is revealed that the shuttle effect is efficiently inhibited because of the boosted conversion of Li PSs. As a result, the coin cell based on the MHCS@Mo S2-S cathode exhibits stable cycling performance maintaining 735.7 mAh g^(-1) after 500 cycles at 1.0 C. More importantly, the pouch cell employing the MHCS@Mo S2-S cathodes achieves high specific capacity of1353.2 m Ah g^(-1) and prominent cycle stability that remaining 960.0 m Ah g^(-1) with extraordinary capacity retention of 79.8% at 0.1 C after 170 cycles. Therefore, this work paves a new avenue for developing practical high specific energy and long-life pouch-type Li–S batteries.
基金supported by the National Key Research and Development Program(2021YFB2500300)the National Natural Science Foundation of China(22179070,22109084,22075029,and U1932220)+1 种基金the China Postdoctoral Science Foundation(2021TQ0161 and 2021M691709)the Beijing Natural Science Foundation(JQ20004)。
文摘A quantitative relationship between safety issues and dendritic lithium(Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 ℃ for Li foil to 111 ℃ for cycled Li.The initial exothermic temperature is reduced from 194 ℃ for routine Li foil to 142 ℃ for 49.5 m~2g^(-1) dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 ℃. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries.
基金supported by the National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22379013 and 22209010)the Beijing Institute of Technology“Xiaomi Young Scholars”program。
文摘Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.
基金supported by the Ministry of Trade,Industry&Energy (A0022-00725)National Research Foundation grant (No.2019R1A2C1084024 and 2021R1A2C2005764) funded by the Ministry of Science and ICT of Korea+2 种基金Chungnam National Universitysupported by the Nano Material Technology Development Program through the National Research Foundation of Koreafunded by the Ministry of Science and ICT of Korea (2009-0082580)。
文摘Elevating the charge cut-off voltage beyond traditional 4.2 V is a commonly accepted technology to increase the energy density of Li-ion batteries(LIBs) but the risk of Li-dendrites and fire hazard increases as well. The use of ambi-functional additive, which forms stable solid electrolyte interphase(SEI) simultaneously at both cathode and anode, is a key to enabling a dendrites-free and well-working high-voltage LIB. Herein, a novel ambi-functional additive, pentaerythritol disulfate(PEDS), at 1 wt% without any other additive is demonstrated. We show the feasibility and high impacts of PEDS in forming lithium sulfateincorporated robust SEI layers at NCM523 cathode and graphite anode in 1 Ah-level pouch cell under4.4 V, 25 °C and 0.1 C rate, which mitigates the high-voltage instability, metal-dissolution and cracks on NCM523 particles, and prevents Li-dendrites at graphite anode. Improved capacity retention of 83%after 300 cycles is thereby achieved, with respect to 69% with base electrolyte, offering a promising path toward the design of practical high-energy LIBs.
基金jointly supported by the Natural Science Foundations of China(Nos.22179020,12174057)Fujian Natural Science Foundation for Distinguished Young Scholars(Grant No.2020J06042)+2 种基金Foreign science and technology cooperation project of Fuzhou Science and Technology Bureau(No.2021-Y-086)Natural Science Foundation of Fujian Province(Grant No.2018J01660)Cultivation plan of outstanding young scientific research talents of Fujian Education Department(Grant No.J1-1323).
文摘Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first time,that is,negative temperature coefficient thermosensitive Pr_(6)O_(11) nanoparticles are uniformly modified on LiCoO_(2) to prepare LiCoO_(2)@Pr_(6)O_(11)(LCO@PrO)via a liquid-phase mixing combined with annealing method.Tested at 274 mA g−1,the modified LCO@PrO electrodes deliver excellent 4.5 V high-voltage cycling performance with capacity retention ratios of 90.8%and 80.5%at 25 and 60℃,being much larger than those of 22.8%and 63.2%for bare LCO electrodes.Several effective strategies were used to clearly unveil the performance enhancement mechanism induced by Pr_(6)O_(11) modification.It is discovered that Pr_(6)O_(11) can improve interface compatibility,exhibit improved conductivity at elevated temperature,thus enhance the Li^(+)diffusion kinetics,and suppress the phase transformation of LCO and its resulting mechanical stresses.The 450 mAh LCO@PrO‖graphite pouch cells show excellent LIB performance and improved thermal safety characteristics.Importantly,the energy density of such pouch cell was increased even by~42%at 5 C.This extremely convenient technology is feasible for producing high-energy density LIBs with negligible cost increase,undoubtedly providing important academic inspiration for industrialization.
基金financed by the German Ministry of Education and Research(BMBF)in the project“HiPoLiS”(No.03XP0178A).
文摘The lithium-sulfur(Li-S)technology is the most promising candidate for next-generation batteries due to its high theoretical specific energy and steady progress for applications requiring lightweight batteries such as aviation or heavy electric vehicles.For these applications,however,the rate capability of Li-S cells requires significant improvement.Advanced electrolyte formulations in Li-S batteries enable new pathways for cell development and adjustment of all components.However,their rate capability at pouch cell level is often neither evaluated nor compared to state of the art(SOTA)LiTFSI/dimethoxyethane/dioxolane(LITFSI:lithium-bis(trifluoromethylsulfonyl)imide)electrolyte.Herein,the combination of the sparingly polysulfide(PS)solvating hexylmethylether/1,2-dimethoxyethane(HME/DME)electrolyte and highly conductive carbon nanotube Buckypaper(CNT-BP)with low porosity was evaluated in both coin and pouch cells and compared to dimethoxyethane/dioxolane reference electrolyte.An advanced sulfur transfer melt infiltration was employed for cathode production with CNT-BP.The Li+ion coordination in the HME/DME electrolyte was investigated by nuclear magnetic resonance(NMR)and Raman spectroscopy.Additionally,ionic conductivity and viscosity was investigated for the pristine electrolyte and a polysulfide-statured solution.Both electrolytes,DME/DOL-1/1(DOL:1,3-dioxolane)and HME/DME-8/2,are then combined with CNT-BP and transferred to multi-layered pouch cells.This study reveals that the ionic conductivity of the electrolyte increases drastically over state of(dis)charge especially for DME/DOL electrolyte and lean electrolyte regime leading to a better rate capability for the sparingly polysulfide solvating electrolyte.The evaluation in prototype cells is an important step towards bespoke adaption of Li-S batteries for practical applications.