The Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical s...The Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical simulations(1900-2013), we evaluate the model performance in simulating the observed characteristics of the Arctic climate system, which includes air temperature, precipitation, the Arctic Oscillation(AO), ocean temperature/salinity,the Atlantic meridional overturning circulation(AMOC), snow cover, and sea ice. The model-data comparisons indicate that the CAMS-CSM reproduces spatial patterns of climatological mean air temperature over the Arctic(60°-90°N) and a rapid warming trend from 1979 to 2013. However, the warming trend is overestimated south of the Arctic Circle, implying a subdued Arctic amplification. The distribution of climatological precipitation in the Arctic is broadly captured in the model, whereas it shows limited skills in depicting the overall increasing trend. The AO can be reproduced by the CAMS-CSM in terms of reasonable patterns and variability. Regarding the ocean simulation, the model underestimates the AMOC and zonally averaged ocean temperatures and salinity above a depth of 500 m, and it fails to reproduce the observed increasing trend in the upper ocean heat content in the Arctic. The largescale distribution of the snow cover extent(SCE) in the Northern Hemisphere and the overall decreasing trend in the spring SCE are captured by the CAMS-CSM, while the biased magnitudes exist. Due to the underestimation of the AMOC and the poor quantification of air–sea interaction, the CAMS-CSM overestimates regional sea ice and underestimates the observed decreasing trend in Arctic sea–ice area in September. Overall, the CAMS-CSM reproduces a climatological distribution of the Arctic climate system and general trends from 1979 to 2013 compared with the observations, but it shows limited skills in modeling local trends and interannual variability.展开更多
To date, numerous books have been published on so-called “pyramid power” but there have been few academic papers on this subject other than our own. Since 2007, to demonstrate the pyramid power, we have undertaken s...To date, numerous books have been published on so-called “pyramid power” but there have been few academic papers on this subject other than our own. Since 2007, to demonstrate the pyramid power, we have undertaken strictly scientific experiments using a pyramidal structure (PS) that we have carefully constructed. In previous reports, we used the edible cucumber, Cucumis sativus as an effective and practical biosensor. Through measurement and analysis of volatile components (gas concentrations) emitted from the biosensor, we were able to demonstrate the existence of the pyramid power and revealed some of its characteristics. In a paper published in 2022, we showed that gas concentration release from this biosensor displayed a circadian rhythm and that this rhythm changed with the season. Based on the result that the biosensor had a periodic diurnal oscillation called a circadian rhythm, we questioned whether or not pyramid power and Bio-Entanglement also had periodic diurnal oscillations. In this paper, we investigated that possibility. Our results have shown that pyramid power and Bio-Entanglement do not exhibit significant periodic diurnal oscillations. Thus we have revealed for the first time that the field associated with pyramid power is a type of static field that always exerts a constant influence. We expect that our research results will be widely accepted in the future and will become the foundation for a new research field in science, with a wide range of applications.展开更多
Abstract The B-spline expansion technique and time-dependent two-level approach are applied to study the interaction between the microwave field and potassium atoms in a static electric field. We obtain theoretical mu...Abstract The B-spline expansion technique and time-dependent two-level approach are applied to study the interaction between the microwave field and potassium atoms in a static electric field. We obtain theoretical multiphoton resonance spectra that can be compared with the experimental data. We also obtain the time evolution of the final state in different microwave fields.展开更多
The human organism is a complex biological system with emergent properties that arise from the unified functional interactions among its diverse components. When studying the brain and body in light of modern biologic...The human organism is a complex biological system with emergent properties that arise from the unified functional interactions among its diverse components. When studying the brain and body in light of modern biological systems approaches, one must analyze them in a holistic manner, putting aside reductionist models in order to understand how certain properties manifest from complex system interactions. The respiratory system is capable of continuously adapting to changes in the internal and external environment, making it one of the most integrated of physiological processes. We propose an additional respiratory process: respiration-derived electrical currents during inspiration that spread throughout the entire body maintaining homeostasis through entraining oscillatory activity, modulating cognitive processes, and modulating the autonomic nervous system. If these currents are indeed created in part from redox reactions occurring on a massive scale, then we assert they are a major aspect of an embodied cognitive framework. We propose that this potentially major source of organism integrity has been overlooked, and its application to medicine could drastically change how we understand human physiology, the autonomic nervous system, and the therapeutic treatment of various clinical disorders.展开更多
The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustaine...The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustained and rhythmic oscillation was observed. To a certain extent, the features of the oscillation (e.g. induction time, frequency, life time and orientation of the pulse pikes) strongly depend on the property of surfactant, dissolved in octanol. The mechanism may be explained by the formation and destruction of dual-ion surfactant membrane accompanying with emulsification at the interface and considering the coupling effect of diffusion and associated reaction in the vicinity of the interface.展开更多
Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and ma...Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and makes the cross cycle in the cyclic voltammogram become smaller and finally disappear with the increase of Cl- concentration. The method is also applicable to the electrocatalytic oxidation of other small organic molecules.展开更多
We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during t...We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during their collisions. The modified oscillation periods are described by defining a characterized speed, with the aid of asymptotic analysis on related exact analytic soliton solutions in integrable cases. The oscillation period can be used to distinguish the inter-and intra-species interactions between solitons. However, a bright soliton cannot oscillate in a harmonic trap, when it is coupled with a dark soliton(without any trapping potentials). Interestingly, it can oscillate in an anti-harmonic potential, and the oscillation behavior is explained by a quasi-particle theory. The modified period of two dark-bright solitons can be also described well by the characterized speed. These results address well the effects of position shift during soliton collision, which provides an important supplement for previous studies without considering phase shift effects.展开更多
In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrate...In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrates Levenberg-Marquardt(L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first,the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then,the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage,which can cause large computation cost and system instability.At last,the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation,while the k-trajectory algorithm is applied to further smooth trajectories.By a series of comparative experiments,the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.展开更多
We analyze the relationships between strato- spheric polar vortex anomalies and cooling events in eastern China using isentropic reanalysis data from the European Center for Medium-Range Weather Forecasts. Daily mean ...We analyze the relationships between strato- spheric polar vortex anomalies and cooling events in eastern China using isentropic reanalysis data from the European Center for Medium-Range Weather Forecasts. Daily mean data from 2000 to 2011 are used to explore the effective stratospheric signals. First, diagnoses of the 2009/2010 winter show that after the stratospheric sudden warming (SSW) of the Atlantic-East Asian (AEA) pattern, the stratospheric high isentropic potential vorticity (IPV) center derived from the split polar vortex will move to the northeast of the Eurasian continent. The air mass, accom- panied by some southward and eastward movements and characterized by high IPV values, will be stretched verti- cally, leading to apparent reinforcements of the positive vorticity and the development of acold vortex system in the troposphere. The northerly wind on the western side of the cold vortex can transport cold air southward and down- ward, resulting in this distinct cooling process in eastern China. Secondly, the empirical orthogonal function ana- lyses of IPV anomalies on the 430 K isentropic surface during 2000-2011 winters indicate that the IPV distribution and time series of the first mode are able to represent the polar vortex variation features, which significantly influ- ence cold-air activity in eastern China, especially in the AEA-type SSW winter. When the time series increases significantly, the polar vortex will be split and the high-IPV center will move to the northeast of the Eurasian continent with downward and southward developments, inducing obvious cooling in eastern China. Moreover, all the four times SSW events of AEA pattern from 2000 to 2011 are reflected in the first time series, and after the strong polar vortex disturbances, cooling processes of different inten- sities are observed in eastern China. The cooling can sus- tain at least 1 week. For this reason, the first time series can be used as an available index of polar vortex oscillation and has the power to predict 展开更多
基金Supported by the National Key Research and Development Program of China(2016YFA0602704)National Natural Science Foundation of China(41505068)
文摘The Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) is a newly developed global climate model that will participate in the Coupled Model Intercomparison Project phase 6. Based on historical simulations(1900-2013), we evaluate the model performance in simulating the observed characteristics of the Arctic climate system, which includes air temperature, precipitation, the Arctic Oscillation(AO), ocean temperature/salinity,the Atlantic meridional overturning circulation(AMOC), snow cover, and sea ice. The model-data comparisons indicate that the CAMS-CSM reproduces spatial patterns of climatological mean air temperature over the Arctic(60°-90°N) and a rapid warming trend from 1979 to 2013. However, the warming trend is overestimated south of the Arctic Circle, implying a subdued Arctic amplification. The distribution of climatological precipitation in the Arctic is broadly captured in the model, whereas it shows limited skills in depicting the overall increasing trend. The AO can be reproduced by the CAMS-CSM in terms of reasonable patterns and variability. Regarding the ocean simulation, the model underestimates the AMOC and zonally averaged ocean temperatures and salinity above a depth of 500 m, and it fails to reproduce the observed increasing trend in the upper ocean heat content in the Arctic. The largescale distribution of the snow cover extent(SCE) in the Northern Hemisphere and the overall decreasing trend in the spring SCE are captured by the CAMS-CSM, while the biased magnitudes exist. Due to the underestimation of the AMOC and the poor quantification of air–sea interaction, the CAMS-CSM overestimates regional sea ice and underestimates the observed decreasing trend in Arctic sea–ice area in September. Overall, the CAMS-CSM reproduces a climatological distribution of the Arctic climate system and general trends from 1979 to 2013 compared with the observations, but it shows limited skills in modeling local trends and interannual variability.
文摘To date, numerous books have been published on so-called “pyramid power” but there have been few academic papers on this subject other than our own. Since 2007, to demonstrate the pyramid power, we have undertaken strictly scientific experiments using a pyramidal structure (PS) that we have carefully constructed. In previous reports, we used the edible cucumber, Cucumis sativus as an effective and practical biosensor. Through measurement and analysis of volatile components (gas concentrations) emitted from the biosensor, we were able to demonstrate the existence of the pyramid power and revealed some of its characteristics. In a paper published in 2022, we showed that gas concentration release from this biosensor displayed a circadian rhythm and that this rhythm changed with the season. Based on the result that the biosensor had a periodic diurnal oscillation called a circadian rhythm, we questioned whether or not pyramid power and Bio-Entanglement also had periodic diurnal oscillations. In this paper, we investigated that possibility. Our results have shown that pyramid power and Bio-Entanglement do not exhibit significant periodic diurnal oscillations. Thus we have revealed for the first time that the field associated with pyramid power is a type of static field that always exerts a constant influence. We expect that our research results will be widely accepted in the future and will become the foundation for a new research field in science, with a wide range of applications.
基金the National Natural Science Foundation of China under,教育部科学技术研究项目
文摘Abstract The B-spline expansion technique and time-dependent two-level approach are applied to study the interaction between the microwave field and potassium atoms in a static electric field. We obtain theoretical multiphoton resonance spectra that can be compared with the experimental data. We also obtain the time evolution of the final state in different microwave fields.
文摘The human organism is a complex biological system with emergent properties that arise from the unified functional interactions among its diverse components. When studying the brain and body in light of modern biological systems approaches, one must analyze them in a holistic manner, putting aside reductionist models in order to understand how certain properties manifest from complex system interactions. The respiratory system is capable of continuously adapting to changes in the internal and external environment, making it one of the most integrated of physiological processes. We propose an additional respiratory process: respiration-derived electrical currents during inspiration that spread throughout the entire body maintaining homeostasis through entraining oscillatory activity, modulating cognitive processes, and modulating the autonomic nervous system. If these currents are indeed created in part from redox reactions occurring on a massive scale, then we assert they are a major aspect of an embodied cognitive framework. We propose that this potentially major source of organism integrity has been overlooked, and its application to medicine could drastically change how we understand human physiology, the autonomic nervous system, and the therapeutic treatment of various clinical disorders.
文摘The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustained and rhythmic oscillation was observed. To a certain extent, the features of the oscillation (e.g. induction time, frequency, life time and orientation of the pulse pikes) strongly depend on the property of surfactant, dissolved in octanol. The mechanism may be explained by the formation and destruction of dual-ion surfactant membrane accompanying with emulsification at the interface and considering the coupling effect of diffusion and associated reaction in the vicinity of the interface.
基金Financial support by the National Natural Science Foundation of China (20073012) is gratefully acknowledged.
文摘Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and makes the cross cycle in the cyclic voltammogram become smaller and finally disappear with the increase of Cl- concentration. The method is also applicable to the electrocatalytic oxidation of other small organic molecules.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12022513, 11775176, 11947301, and 12047502)the Major Basic Research Program of the Natural Science of Foundation of Shaanxi Province, China (Grant Nos. 2018KJXX-094 and 2017KCT-12)。
文摘We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during their collisions. The modified oscillation periods are described by defining a characterized speed, with the aid of asymptotic analysis on related exact analytic soliton solutions in integrable cases. The oscillation period can be used to distinguish the inter-and intra-species interactions between solitons. However, a bright soliton cannot oscillate in a harmonic trap, when it is coupled with a dark soliton(without any trapping potentials). Interestingly, it can oscillate in an anti-harmonic potential, and the oscillation behavior is explained by a quasi-particle theory. The modified period of two dark-bright solitons can be also described well by the characterized speed. These results address well the effects of position shift during soliton collision, which provides an important supplement for previous studies without considering phase shift effects.
基金Supported by the National Key Basic Research Program of China(973 Project)(No.2013CB035503)
文摘In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrates Levenberg-Marquardt(L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first,the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then,the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage,which can cause large computation cost and system instability.At last,the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation,while the k-trajectory algorithm is applied to further smooth trajectories.By a series of comparative experiments,the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.
基金supported by the National Natural Science Foundation of China(41205041)Chinese Special Fund for Meteorology(GYHY201406020)+1 种基金National Basic Research Program of China(2012CB417205)LCS Open Funds for Young Scholars(2014)
文摘We analyze the relationships between strato- spheric polar vortex anomalies and cooling events in eastern China using isentropic reanalysis data from the European Center for Medium-Range Weather Forecasts. Daily mean data from 2000 to 2011 are used to explore the effective stratospheric signals. First, diagnoses of the 2009/2010 winter show that after the stratospheric sudden warming (SSW) of the Atlantic-East Asian (AEA) pattern, the stratospheric high isentropic potential vorticity (IPV) center derived from the split polar vortex will move to the northeast of the Eurasian continent. The air mass, accom- panied by some southward and eastward movements and characterized by high IPV values, will be stretched verti- cally, leading to apparent reinforcements of the positive vorticity and the development of acold vortex system in the troposphere. The northerly wind on the western side of the cold vortex can transport cold air southward and down- ward, resulting in this distinct cooling process in eastern China. Secondly, the empirical orthogonal function ana- lyses of IPV anomalies on the 430 K isentropic surface during 2000-2011 winters indicate that the IPV distribution and time series of the first mode are able to represent the polar vortex variation features, which significantly influ- ence cold-air activity in eastern China, especially in the AEA-type SSW winter. When the time series increases significantly, the polar vortex will be split and the high-IPV center will move to the northeast of the Eurasian continent with downward and southward developments, inducing obvious cooling in eastern China. Moreover, all the four times SSW events of AEA pattern from 2000 to 2011 are reflected in the first time series, and after the strong polar vortex disturbances, cooling processes of different inten- sities are observed in eastern China. The cooling can sus- tain at least 1 week. For this reason, the first time series can be used as an available index of polar vortex oscillation and has the power to predict