Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
A simple model for computing the electron transfer rate constant of a cross-reaction has been proposed in the framework of semiclassical theory and employed to investigate the electron transfer system NO2+/NO.The enco...A simple model for computing the electron transfer rate constant of a cross-reaction has been proposed in the framework of semiclassical theory and employed to investigate the electron transfer system NO2+/NO.The encounter complex of electron transfer NO2++NO→NO2+NO+has been optimized at the level of UHF/6-31G.In the construction of diabatic potential energy surfaces the linear coordinate was used and the kinetic quantities,such as the activation energies and the electron transfer matrix elements,have been obtained.For comparison,the related self-exchange reation systems NO2+/NO2 and NO+/NO were kinetically investigated.The calculated activation energies for the electron transfer reactions of systems NO2+/NO,NO2+/NO2,and NO+/NO are 81 4,128.8,and 39.8kJ mol-1,respectively With the solvent effect taken into account,the contribution of solvent reorganization to the activation energy has been estimated according to the geometric parameters of the transition states.The obtained rate constants show that the activity of NO2 as an oxidizing reagent in the aromatic nitration will be greatly decreased due to a high activation barrier contributed mainly from the change of bond angle ONO.展开更多
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
基金Project supported by the National Natural Science Foundation of China
文摘A simple model for computing the electron transfer rate constant of a cross-reaction has been proposed in the framework of semiclassical theory and employed to investigate the electron transfer system NO2+/NO.The encounter complex of electron transfer NO2++NO→NO2+NO+has been optimized at the level of UHF/6-31G.In the construction of diabatic potential energy surfaces the linear coordinate was used and the kinetic quantities,such as the activation energies and the electron transfer matrix elements,have been obtained.For comparison,the related self-exchange reation systems NO2+/NO2 and NO+/NO were kinetically investigated.The calculated activation energies for the electron transfer reactions of systems NO2+/NO,NO2+/NO2,and NO+/NO are 81 4,128.8,and 39.8kJ mol-1,respectively With the solvent effect taken into account,the contribution of solvent reorganization to the activation energy has been estimated according to the geometric parameters of the transition states.The obtained rate constants show that the activity of NO2 as an oxidizing reagent in the aromatic nitration will be greatly decreased due to a high activation barrier contributed mainly from the change of bond angle ONO.