A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing b...A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior.展开更多
The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,n...The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.展开更多
Laboratory tests on the large post-liquefaction deformation of saturated Nanjing fine sand were performed by using a hollow cylinder apparatus. The stress-strain responses and the characteristics of excess pore water ...Laboratory tests on the large post-liquefaction deformation of saturated Nanjing fine sand were performed by using a hollow cylinder apparatus. The stress-strain responses and the characteristics of excess pore water pressure after liquefaction were studied. It was found that the relationship between deviatoric stress and axial strain presented a sigmoid curve, and there was a good linearity relationship between normalized pore water pressure and deviatoric stress. On this basis, a constitutive model of stress-strain responses and a dissipation model of excess pore water pressure were established. It was found that the results predicted by the two models were in good agreement with the experimental data. The influence of relative densities and confining pressure on the characteristics of liquefied soil were studied, The results showed the relative densities and initial effective confining pressure all had an important influence on the stress-strain responses of liquefied saturated Nanjing fine sand. However, the dissipation model of excess pore water pressure after liquefaction was only affected by the confining pressure.展开更多
The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyz...The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyze the mechanism of such spiky acceleration responses. An idealized single-degree-of-freedom(SDF) system was constructed, in which the force-displacement relation of the spring follows the stress-strain behavior of saturated sand during undrained shearing. The SDF system demonstrated that the spikes are directly related to the strain-hardening behavior of sand during post-liquefaction cyclic shearing. Furthermore, there exists a threshold shear strain length, which is in accordance with the limited amplitude of the fluid-like shear strain generated at instantaneous zero effective stress state during the post-liquefaction stage. The spiky acceleration can only occur when the cyclic shear strain exceeds the threshold shear strain length. It is also revealed that the time intervals between the acceleration spikes increase gradually along with the continuation of shaking because the threshold shear strain length increases gradually and then more time is needed to generate larger shear strain to cause strain hardening. Records at the Kushiro Port site and Port Island site during past earthquakes are simulated through the fully coupled method to validate the presented mechanism.展开更多
The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by t...The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.展开更多
To investigate the post-liquefaction shearing behaviour of saturated gravelly soil,laboratory tests were conducted using a staticedynamic multi-purpose triaxial apparatus.In addition,numerical simulations using the di...To investigate the post-liquefaction shearing behaviour of saturated gravelly soil,laboratory tests were conducted using a staticedynamic multi-purpose triaxial apparatus.In addition,numerical simulations using the discrete element method(DEM)were performed to preliminarily understand the micromechanism of gravelly soil in monotonic loading after liquefaction.The influences of dry density,initial confining stress and degree of liquefaction on the post-liquefaction shearing behaviour of gravelly soil were discussed,and the evolution of the micro-parameters of the granular system was also analysed.The results show that the stressestrain responses of gravelly soil after liquefaction can be divided into three stages:(1)low strength stage,(2)super-linear strength recovery stage,and(3)sublinear strength recovery stage,which are distinctly different from those of the general saturated gravelly soil without previous cyclic loading.The initial state and prior dynamic stress history have significant influences on the post-liquefaction shearing behaviour of gravelly soil.The DEM simulation revealed that the average coordination number sharply increases,the contact normal shows an obvious orientation distribution,and the destroyed force chain backbones are reconstructed in the monotonic reloading process after liquefaction.The evolution of the micro-parameters of the granular system clearly reflects the interior interaction process and micro-mechanisms in the particles during the three different stages of the macro-mechanical behaviour of gravelly soil.展开更多
基金financially supported by JSPS KAKENHI Grant Number JP19K15083.
文摘A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior.
基金Project(51109208)supported by the National Natural Science Foundation of ChinaProject(2013M531688)supported by the Postdoctoral Science Foundation of China+1 种基金Project(Z012009)supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Institute of Rock and Soil Mechanics,Chinese Academy of Sciences)Project(CKSF2012054)supported by the Foundation of Changjiang River Scientific Research Institute,China
文摘The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.
文摘Laboratory tests on the large post-liquefaction deformation of saturated Nanjing fine sand were performed by using a hollow cylinder apparatus. The stress-strain responses and the characteristics of excess pore water pressure after liquefaction were studied. It was found that the relationship between deviatoric stress and axial strain presented a sigmoid curve, and there was a good linearity relationship between normalized pore water pressure and deviatoric stress. On this basis, a constitutive model of stress-strain responses and a dissipation model of excess pore water pressure were established. It was found that the results predicted by the two models were in good agreement with the experimental data. The influence of relative densities and confining pressure on the characteristics of liquefied soil were studied, The results showed the relative densities and initial effective confining pressure all had an important influence on the stress-strain responses of liquefied saturated Nanjing fine sand. However, the dissipation model of excess pore water pressure after liquefaction was only affected by the confining pressure.
基金National Natural Science Foundation of China under Grant No.51209179,51679016)the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering(SKLHSE-2015-D-03)
文摘The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyze the mechanism of such spiky acceleration responses. An idealized single-degree-of-freedom(SDF) system was constructed, in which the force-displacement relation of the spring follows the stress-strain behavior of saturated sand during undrained shearing. The SDF system demonstrated that the spikes are directly related to the strain-hardening behavior of sand during post-liquefaction cyclic shearing. Furthermore, there exists a threshold shear strain length, which is in accordance with the limited amplitude of the fluid-like shear strain generated at instantaneous zero effective stress state during the post-liquefaction stage. The spiky acceleration can only occur when the cyclic shear strain exceeds the threshold shear strain length. It is also revealed that the time intervals between the acceleration spikes increase gradually along with the continuation of shaking because the threshold shear strain length increases gradually and then more time is needed to generate larger shear strain to cause strain hardening. Records at the Kushiro Port site and Port Island site during past earthquakes are simulated through the fully coupled method to validate the presented mechanism.
基金Project(90715018)supported by the National Natural Science Foundation of ChinaProject(200808022)supported by the Special Fund for the Commonweal Indusry of China+1 种基金Project(08KJA560001)supported by the Key Basic Research Program of Natural Science of University in Jiangsu ProvinceProject(CX10B_170Z)supported by the Postgraduate Scientific Innovation Program in Jiangsu Province,China
文摘The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51979269,51779017,and 41702348)。
文摘To investigate the post-liquefaction shearing behaviour of saturated gravelly soil,laboratory tests were conducted using a staticedynamic multi-purpose triaxial apparatus.In addition,numerical simulations using the discrete element method(DEM)were performed to preliminarily understand the micromechanism of gravelly soil in monotonic loading after liquefaction.The influences of dry density,initial confining stress and degree of liquefaction on the post-liquefaction shearing behaviour of gravelly soil were discussed,and the evolution of the micro-parameters of the granular system was also analysed.The results show that the stressestrain responses of gravelly soil after liquefaction can be divided into three stages:(1)low strength stage,(2)super-linear strength recovery stage,and(3)sublinear strength recovery stage,which are distinctly different from those of the general saturated gravelly soil without previous cyclic loading.The initial state and prior dynamic stress history have significant influences on the post-liquefaction shearing behaviour of gravelly soil.The DEM simulation revealed that the average coordination number sharply increases,the contact normal shows an obvious orientation distribution,and the destroyed force chain backbones are reconstructed in the monotonic reloading process after liquefaction.The evolution of the micro-parameters of the granular system clearly reflects the interior interaction process and micro-mechanisms in the particles during the three different stages of the macro-mechanical behaviour of gravelly soil.