Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 P...Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 Pa system, respectively. The dependence of resistivity on deposition parameters, such as deposition rate, target-to-substrate distance (TSD), oxygen flow rate and sputtering time (thickness), has been investigated, together with the structural and the optical properties. It was revealed that all ITO films exhibited lattice expansion. The resistivity of ITO thin films shows significant substrate effect: much lower resistivity and broader process window have been reproducibly achieved for the deposition of ITO films onto polyester rather than those prepared on both Si and glass substrates. The films with resistivity of as low as 4.23 x 10^-4 Ω.cm and average transmittance of ~78% at wavelength of 400~700 nm have been achieved for the films on polyester at room temperature.展开更多
ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. ...ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. The correlation of the annealing conditions with the microstructure and properties of the ZnO films wer e investigated by ultraviolet-visible spectroscopy, X-ray diffraction, conductiv ity measurement and scanning electron microscopy. Only the strong 002 peak could be observed by X-ray diffraction. The post-deposition annealing of ZnO films wa s found to alter the film's microstructure and properties, including crystallini ty, porosity, grain size, internal stress level and resistivity. It was also fou nd that after annealing, the conductivity of poorly conductive samples often imp roved. However, annealing does not improve the conductivity of samples with high conductivity prior to annealing. The resistivity of as-grown films can be decre ased from 102 to 10-4Ω·cm after annealing in nitrogen. To explain the effects of annealing on the conductivity of ZnO, it is believed that annealing may alter the presence and distribution of oxygen defects, reduce the lattice stress, cau se diffusion, grain coarsening and recrystallization. Annealing will reduce the density of grain boundaries in less dense films, which may decrease the resistiv ity of the films. On the other hand, annealing may also increase the porosity of thin films, leading to an increase in resistivity.展开更多
文摘Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 Pa system, respectively. The dependence of resistivity on deposition parameters, such as deposition rate, target-to-substrate distance (TSD), oxygen flow rate and sputtering time (thickness), has been investigated, together with the structural and the optical properties. It was revealed that all ITO films exhibited lattice expansion. The resistivity of ITO thin films shows significant substrate effect: much lower resistivity and broader process window have been reproducibly achieved for the deposition of ITO films onto polyester rather than those prepared on both Si and glass substrates. The films with resistivity of as low as 4.23 x 10^-4 Ω.cm and average transmittance of ~78% at wavelength of 400~700 nm have been achieved for the films on polyester at room temperature.
基金This work was supported by New Zealand Foundation for Research,Science and Technology(Top Achiever Doctoral Scholarship)Australian Institute of Nuclear Science and Engineering(Postgraduate Award).The authors would also like to thank Mrs.Catherine Hobbis for technical support.
文摘ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. The correlation of the annealing conditions with the microstructure and properties of the ZnO films wer e investigated by ultraviolet-visible spectroscopy, X-ray diffraction, conductiv ity measurement and scanning electron microscopy. Only the strong 002 peak could be observed by X-ray diffraction. The post-deposition annealing of ZnO films wa s found to alter the film's microstructure and properties, including crystallini ty, porosity, grain size, internal stress level and resistivity. It was also fou nd that after annealing, the conductivity of poorly conductive samples often imp roved. However, annealing does not improve the conductivity of samples with high conductivity prior to annealing. The resistivity of as-grown films can be decre ased from 102 to 10-4Ω·cm after annealing in nitrogen. To explain the effects of annealing on the conductivity of ZnO, it is believed that annealing may alter the presence and distribution of oxygen defects, reduce the lattice stress, cau se diffusion, grain coarsening and recrystallization. Annealing will reduce the density of grain boundaries in less dense films, which may decrease the resistiv ity of the films. On the other hand, annealing may also increase the porosity of thin films, leading to an increase in resistivity.