This paper proposes a new two-step non-oscillatory shape-preserving positive definite finite difference advection transport scheme, which merges the advantages of small dispersion error in the simple first-order upst... This paper proposes a new two-step non-oscillatory shape-preserving positive definite finite difference advection transport scheme, which merges the advantages of small dispersion error in the simple first-order upstream scheme and small dissipation error in the simple second-order Lax-Wendroff scheme and is completely different from most of present positive definite advection schemes which are based on revising the upstream scheme results. The proposed scheme is much less time consuming than present shape-preserving or non-oscillatory advection transport schemes and produces results which are comparable to the results obtained from the present more complicated schemes. Elementary tests are also presented to examine the behavior of the scheme.展开更多
We construct a positive type difference scheme for a singularly perturbed boundary value problem with a turning point. It's proved that this scheme is the second order convergence, uniformly in ? , to the solution...We construct a positive type difference scheme for a singularly perturbed boundary value problem with a turning point. It's proved that this scheme is the second order convergence, uniformly in ? , to the solution of the singularly perturbed B. V.P. Numerical examples are provided.展开更多
基金This work is supported by the Ntional Natural Science Foundation of China.
文摘 This paper proposes a new two-step non-oscillatory shape-preserving positive definite finite difference advection transport scheme, which merges the advantages of small dispersion error in the simple first-order upstream scheme and small dissipation error in the simple second-order Lax-Wendroff scheme and is completely different from most of present positive definite advection schemes which are based on revising the upstream scheme results. The proposed scheme is much less time consuming than present shape-preserving or non-oscillatory advection transport schemes and produces results which are comparable to the results obtained from the present more complicated schemes. Elementary tests are also presented to examine the behavior of the scheme.
文摘We construct a positive type difference scheme for a singularly perturbed boundary value problem with a turning point. It's proved that this scheme is the second order convergence, uniformly in ? , to the solution of the singularly perturbed B. V.P. Numerical examples are provided.