We study the Hermitian positive definite solutions of the matrix equation X +A*X^-qA = I with q > 0. Some properties of the solutions and the basic fixed point iterations for the equation are also discussed in some...We study the Hermitian positive definite solutions of the matrix equation X +A*X^-qA = I with q > 0. Some properties of the solutions and the basic fixed point iterations for the equation are also discussed in some detail. Some of results in [Linear Algebra Appl., 279 (1998), 303-316], [Linear Algebra Appl., 326 (2001),27-44] and [Linear Algebra Appl. 372 (2003), 295-304] are extended.展开更多
The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic...The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic fixed point iterations for the equation are discussed in detail. Some convergence conditions of the basic fixed point iterations to approximate the solutions to the equation are given.展开更多
In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is s...In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.展开更多
文摘We study the Hermitian positive definite solutions of the matrix equation X +A*X^-qA = I with q > 0. Some properties of the solutions and the basic fixed point iterations for the equation are also discussed in some detail. Some of results in [Linear Algebra Appl., 279 (1998), 303-316], [Linear Algebra Appl., 326 (2001),27-44] and [Linear Algebra Appl. 372 (2003), 295-304] are extended.
文摘The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic fixed point iterations for the equation are discussed in detail. Some convergence conditions of the basic fixed point iterations to approximate the solutions to the equation are given.
文摘In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.