目的单目相机运动轨迹恢复由于输入只有单目视频序列而缺乏尺度信息,生成的轨迹存在严重漂移而无法进行高精度应用。为了能够运用单目相机普及度高、成本低的优势,提出一种基于场景几何的方法在自动驾驶领域进行真实尺度恢复。方法首先...目的单目相机运动轨迹恢复由于输入只有单目视频序列而缺乏尺度信息,生成的轨迹存在严重漂移而无法进行高精度应用。为了能够运用单目相机普及度高、成本低的优势,提出一种基于场景几何的方法在自动驾驶领域进行真实尺度恢复。方法首先使用深度估计网络对连续图像进行相对深度估计,利用估计的深度值将像素点从2维平面投影到3维空间。然后对光流网络估计出的光流进行前后光流一致性计算得到有效匹配点,使用传统方法求解位姿,使相对深度与位姿尺度统一。再利用相对深度值计算表面法向量图求解地面点群,通过几何关系计算相同尺度的相机高度后引入相机先验高度得到初始尺度。最后为了减小图像噪声对尺度造成的偏差,由额外的车辆检测模块计算出的补偿尺度与初始尺度加权得到最终尺度。结果实验在KITTI(Karlsruhe Institute of Technology and Toyota Technological at Chicago)自动驾驶数据集上进行,相机运动轨迹和图像深度均在精度上得到提高。使用深度真实值尺度还原后的相对深度的绝对误差为0.114,使用本文方法进行尺度恢复后的绝对深度的绝对误差为0.116。对得到的相机运动轨迹在不同复杂路径中进行对比测试,使用尺度恢复的距离与真实距离误差为2.67%,恢复出的轨迹相比传统方法的ORB-SLAM2(oriented FAST and rotated BRIEF-simultaneous localization and mapping)更接近真实轨迹。结论本文仅以单目相机图像作为输入,在自动驾驶数据集中利用自监督学习方法,不需要真实深度标签进行训练,利用场景中的几何约束对真实尺度进行恢复,恢复出的绝对深度和真实轨迹均在精度上有所提高。相比于传统方法在加入真实尺度后偏移量误差更低,且计算速度快、鲁棒性高。展开更多
文摘目的单目相机运动轨迹恢复由于输入只有单目视频序列而缺乏尺度信息,生成的轨迹存在严重漂移而无法进行高精度应用。为了能够运用单目相机普及度高、成本低的优势,提出一种基于场景几何的方法在自动驾驶领域进行真实尺度恢复。方法首先使用深度估计网络对连续图像进行相对深度估计,利用估计的深度值将像素点从2维平面投影到3维空间。然后对光流网络估计出的光流进行前后光流一致性计算得到有效匹配点,使用传统方法求解位姿,使相对深度与位姿尺度统一。再利用相对深度值计算表面法向量图求解地面点群,通过几何关系计算相同尺度的相机高度后引入相机先验高度得到初始尺度。最后为了减小图像噪声对尺度造成的偏差,由额外的车辆检测模块计算出的补偿尺度与初始尺度加权得到最终尺度。结果实验在KITTI(Karlsruhe Institute of Technology and Toyota Technological at Chicago)自动驾驶数据集上进行,相机运动轨迹和图像深度均在精度上得到提高。使用深度真实值尺度还原后的相对深度的绝对误差为0.114,使用本文方法进行尺度恢复后的绝对深度的绝对误差为0.116。对得到的相机运动轨迹在不同复杂路径中进行对比测试,使用尺度恢复的距离与真实距离误差为2.67%,恢复出的轨迹相比传统方法的ORB-SLAM2(oriented FAST and rotated BRIEF-simultaneous localization and mapping)更接近真实轨迹。结论本文仅以单目相机图像作为输入,在自动驾驶数据集中利用自监督学习方法,不需要真实深度标签进行训练,利用场景中的几何约束对真实尺度进行恢复,恢复出的绝对深度和真实轨迹均在精度上有所提高。相比于传统方法在加入真实尺度后偏移量误差更低,且计算速度快、鲁棒性高。