Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot...Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.