Genetic diversity and population genetic structure in 188 individuals from five natural populations of Castampsis fargesii Franch. were studied by RAPD markers. Three hundred and eighty-five loci were identified with ...Genetic diversity and population genetic structure in 188 individuals from five natural populations of Castampsis fargesii Franch. were studied by RAPD markers. Three hundred and eighty-five loci were identified with 41 oligonucleotide primers, out of which 157 loci were polymorphic and accounted for 40.78% of total genetic diversity at species level. Shannon's indices of diversity (I) and Nei's gene diversity ( h) were 0.459 7 and 0.296 at the species level, respectively. The result showed that genetic variation of C. fargesii populations mainly existed within populations. Genetic differentiation (Hsp-hpop)/Hsp estimated with Shannon's index of diversity and coefficient of gene differentiation (Gst) were 0.047 6 and 0.042 9 respectively, which were confirmed by the analysis of molecular variance (AMOVA). Therefore, it is apparent that within-population variation accounted for 94.97% and among-populations variation accounted for only 5.03% of the total genetic diversity. AMOVA also indicated that there was significant differentiation among populations as well as among individuals within a population.展开更多
文摘Genetic diversity and population genetic structure in 188 individuals from five natural populations of Castampsis fargesii Franch. were studied by RAPD markers. Three hundred and eighty-five loci were identified with 41 oligonucleotide primers, out of which 157 loci were polymorphic and accounted for 40.78% of total genetic diversity at species level. Shannon's indices of diversity (I) and Nei's gene diversity ( h) were 0.459 7 and 0.296 at the species level, respectively. The result showed that genetic variation of C. fargesii populations mainly existed within populations. Genetic differentiation (Hsp-hpop)/Hsp estimated with Shannon's index of diversity and coefficient of gene differentiation (Gst) were 0.047 6 and 0.042 9 respectively, which were confirmed by the analysis of molecular variance (AMOVA). Therefore, it is apparent that within-population variation accounted for 94.97% and among-populations variation accounted for only 5.03% of the total genetic diversity. AMOVA also indicated that there was significant differentiation among populations as well as among individuals within a population.