This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomi...This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained.展开更多
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ...A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.展开更多
In this paper orthogonal matrix polynomials with respect to a right matrix moment functional an introduced. Basic results, important examples and applications to the approximation of matrix integrals are studied. Err... In this paper orthogonal matrix polynomials with respect to a right matrix moment functional an introduced. Basic results, important examples and applications to the approximation of matrix integrals are studied. Error bounds for the proposed matrix quadrature rules are given.展开更多
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper...Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.展开更多
The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made ...The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made by an integral transformation which is a modified Laplace transformation and is called Sumudu transformation. It makes the transition from the Exponential series to the Geometric series and may help to evaluate new infinite power series from known Taylor series. The Sumudu transformation is demonstrated to be a limiting case of Fractional integration. Apart from the basic Sumudu integral transformation we discuss a modification where the coefficients ?from the Taylor series are not changed to f(n)(0)?but only to . Beside simple examples our applications are mainly concerned to calculate new Generating functions for Hermite polynomials from the basic ones.展开更多
It is shown that any polynomial written as an infinite product with all positive real roots may be split in two steps into the product of four infinite polynomials: two with all imaginary and two with all real roots. ...It is shown that any polynomial written as an infinite product with all positive real roots may be split in two steps into the product of four infinite polynomials: two with all imaginary and two with all real roots. Equations between such infinite products define adjoint infinite polynomials with roots on the adjoint roots (real and imaginary). It is shown that the shifting of the coordinates to a parallel line of one of the adjoint axes does not influence the relative placement of the roots: they are shifted to the parallel line. General relations between original and adjoint polynomials are evaluated. These relations are generalized representations of the relations of Euler and Pythagoras in form of infinite polynomial products. They are inherent properties of split polynomial products. If the shifting of the coordinate system corresponds to the shifting of the imaginary axes to the critical line, then the relations of Euler take the form corresponding to their occurrence in the functional equation of the Riemann zeta function: the roots on the imaginary axes are all shifted to the critical line. Since it is known that the gamma and the zeta functions may be written as composed functions with exponential and trigonometric parts, this opens the possibility to prove the placement of the zeta function on the critical line.展开更多
In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some ...In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some certain identities.Furthermore,we give some relationships between degenerate unipoly polynomials and special numbers and polynomials.In the last section,certain beautiful zeros and graphical representations of type 2 degenerate poly-Fubini polynomials are shown.展开更多
A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgenc...A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgence relation within the sequence of Riemann-Hilbert problems is observed in the procedure of derivation.Global asymptotic approximations are obtained in terms of the Airy function.The system of Hermite polynomials is used as an illustration.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi...Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.展开更多
In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square int...In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square integrable basis. Here, we show how to reconstruct the potential function so that a correspondence with the standard formulation could be established. However, the correspondence places restriction on the kinematics of such problems.展开更多
文摘This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained.
文摘A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.
文摘 In this paper orthogonal matrix polynomials with respect to a right matrix moment functional an introduced. Basic results, important examples and applications to the approximation of matrix integrals are studied. Error bounds for the proposed matrix quadrature rules are given.
文摘Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.
文摘The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made by an integral transformation which is a modified Laplace transformation and is called Sumudu transformation. It makes the transition from the Exponential series to the Geometric series and may help to evaluate new infinite power series from known Taylor series. The Sumudu transformation is demonstrated to be a limiting case of Fractional integration. Apart from the basic Sumudu integral transformation we discuss a modification where the coefficients ?from the Taylor series are not changed to f(n)(0)?but only to . Beside simple examples our applications are mainly concerned to calculate new Generating functions for Hermite polynomials from the basic ones.
文摘It is shown that any polynomial written as an infinite product with all positive real roots may be split in two steps into the product of four infinite polynomials: two with all imaginary and two with all real roots. Equations between such infinite products define adjoint infinite polynomials with roots on the adjoint roots (real and imaginary). It is shown that the shifting of the coordinates to a parallel line of one of the adjoint axes does not influence the relative placement of the roots: they are shifted to the parallel line. General relations between original and adjoint polynomials are evaluated. These relations are generalized representations of the relations of Euler and Pythagoras in form of infinite polynomial products. They are inherent properties of split polynomial products. If the shifting of the coordinate system corresponds to the shifting of the imaginary axes to the critical line, then the relations of Euler take the form corresponding to their occurrence in the functional equation of the Riemann zeta function: the roots on the imaginary axes are all shifted to the critical line. Since it is known that the gamma and the zeta functions may be written as composed functions with exponential and trigonometric parts, this opens the possibility to prove the placement of the zeta function on the critical line.
基金This work was supported by the Taif University Researchers Supporting Project(TURSP-2020/246)“Taif University,Taif,Saudi Arabia”.
文摘In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some certain identities.Furthermore,we give some relationships between degenerate unipoly polynomials and special numbers and polynomials.In the last section,certain beautiful zeros and graphical representations of type 2 degenerate poly-Fubini polynomials are shown.
基金supported in part by National Natural Science Foundation of China(Grant Nos. 10471154,10871212)
文摘A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgence relation within the sequence of Riemann-Hilbert problems is observed in the procedure of derivation.Global asymptotic approximations are obtained in terms of the Airy function.The system of Hermite polynomials is used as an illustration.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
文摘Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.
基金support by the Saudi Center for Theoretical Physics (SCTP) during the progress of this work
文摘In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square integrable basis. Here, we show how to reconstruct the potential function so that a correspondence with the standard formulation could be established. However, the correspondence places restriction on the kinematics of such problems.