期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
基于矩量法的移动荷载识别 被引量:9
1
作者 余岭 朱军华 +1 位作者 陈敏中 Chan T H T 《振动工程学报》 EI CSCD 北大核心 2006年第4期509-513,共5页
从桥梁响应识别桥面移动荷载往往出现逆问题的病态(不适定性)等共性问题。本文基于移动荷载识别理论,借助矩量法求解积分方程理论并采用整域基函数——正交勒让德多项式表达桥面移动荷载,提出了一种移动荷载识别的时域改进算法。两轴车... 从桥梁响应识别桥面移动荷载往往出现逆问题的病态(不适定性)等共性问题。本文基于移动荷载识别理论,借助矩量法求解积分方程理论并采用整域基函数——正交勒让德多项式表达桥面移动荷载,提出了一种移动荷载识别的时域改进算法。两轴车辆多种组合工况下的常载和时变荷载数值仿真研究表明:与时域法比较,改进时域法识别桥面移动荷载时,其识别精度高、抗噪能力强,识别结果不适定性有显著改善。 展开更多
关键词 移动荷载识别 时域法 矩量法 勒让德多项式 基函数
下载PDF
公钥体系中Chebyshev多项式的改进 被引量:11
2
作者 刘亮 刘云 宁红宙 《北京交通大学学报》 EI CAS CSCD 北大核心 2005年第5期56-59,共4页
加密算法是当今公钥体系的关键技术.本文在现有Chebyshev多项式基础上进行扩展,提出了有限域Chebyshev多项式的定义,并通过理论证明和编程实验分析总结出它的单向性和带陷门特性等.经过分析这些性质得出,针对实数域Chebyshev多项式提出... 加密算法是当今公钥体系的关键技术.本文在现有Chebyshev多项式基础上进行扩展,提出了有限域Chebyshev多项式的定义,并通过理论证明和编程实验分析总结出它的单向性和带陷门特性等.经过分析这些性质得出,针对实数域Chebyshev多项式提出的破解方法在有限域上不再成立或可以避免.最后指出有限域Chebyshev多项式作为公钥加密体系的基础是可行的. 展开更多
关键词 密码学 CHEBYSHEV多项式 有限域 自相关函数
下载PDF
随机变量的分布函数及其计算 被引量:5
3
作者 李跃波 《云南民族大学学报(自然科学版)》 CAS 2004年第1期25-26,30,共3页
 在统计中,经常遇到一个随机变量的矩容易求出而该随机变量的分布函数难以得到的问题。现以傅氏级数为基础,运用契贝谢夫多项式,给出了用随机变量的矩求其分布函数的表达式。虽然这种表达式以级数的形式给出,但它便于用计算机进行处理...  在统计中,经常遇到一个随机变量的矩容易求出而该随机变量的分布函数难以得到的问题。现以傅氏级数为基础,运用契贝谢夫多项式,给出了用随机变量的矩求其分布函数的表达式。虽然这种表达式以级数的形式给出,但它便于用计算机进行处理与计算。 展开更多
关键词 随机变量 分布函数 傅氏级数 契贝谢夫多项式
下载PDF
Galerkin Method for Numerical Solution of Volterra Integro-Differential Equations with Certain Orthogonal Basis Function
4
作者 Omotayo Adebayo Taiwo Liman Kibokun Alhassan +1 位作者 Olutunde Samuel Odetunde Olatayo Olusegun Alabi 《International Journal of Modern Nonlinear Theory and Application》 2023年第2期68-80,共13页
This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomi... This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained. 展开更多
关键词 Galerkin Method Integro-Differential Equation Orthogonal polynomials Basis function Approximate Solution
下载PDF
Chebyshev Polynomials with Applications to Two-Dimensional Operators 被引量:1
5
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2019年第12期990-1033,共44页
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ... A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form. 展开更多
关键词 HYPERGEOMETRIC function JACOBI polynomials Ultraspherical polynomials Chebyshev polynomials LEGENDRE polynomials Hamilton-Cayley Identity Generating functions FIBONACCI and Lucas Numbers Special LORENTZ Transformations Coordinate-Invariant Methods
下载PDF
ORTHOGONAL MATRIX POLYNOMIALS WITH RESPECT TO LINEAR MATRIX MOMENT FUNCTION ALS:THEORY AND APPLICATIONS 被引量:5
6
作者 L.Jódar E.Defez E.Ponsoda 《Analysis in Theory and Applications》 1996年第1期96-115,共20页
In this paper orthogonal matrix polynomials with respect to a right matrix moment functional an introduced. Basic results, important examples and applications to the approximation of matrix integrals are studied. Err... In this paper orthogonal matrix polynomials with respect to a right matrix moment functional an introduced. Basic results, important examples and applications to the approximation of matrix integrals are studied. Error bounds for the proposed matrix quadrature rules are given. 展开更多
关键词 ORTHOGONAL MATRIX polynomials WITH RESPECT TO LINEAR MATRIX MOMENT function ALS 艺人 APPI
下载PDF
Operator Methods and SU(1,1) Symmetry in the Theory of Jacobi and of Ultraspherical Polynomials
7
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2017年第2期213-261,共49页
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper... Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schr&ouml;dinger equation to P&ouml;schl-Teller potentials. 展开更多
关键词 Orthogonal polynomials Lie Algebra SU(1 1) and Lie Group SU(1 1) Lowering and Raising Operators Jacobi polynomials Ultraspherical polynomials Gegenbauer polynomials Chebyshev polynomials Legendre polynomials Stirling Numbers Hypergeometric function Operator Identities Vandermond’s Convolution Identity Poschl-Teller Potentials
下载PDF
基于梯度下降法的Chebyshev前向神经网络 被引量:4
8
作者 肖秀春 彭银桥 +1 位作者 梅其祥 闫敬文 《安徽工业大学学报(自然科学版)》 CAS 2018年第2期153-159,共7页
传统人工神经网络模型中,同一隐层各神经元的激励函数是相同的,这与人类神经元的实际情况不一致。为此,构造一种隐层各神经元激励函数互不相同的前向神经网络模型,采用一簇Chebyshev正交多项式序列作为其隐层各神经元的激励函数(简称Che... 传统人工神经网络模型中,同一隐层各神经元的激励函数是相同的,这与人类神经元的实际情况不一致。为此,构造一种隐层各神经元激励函数互不相同的前向神经网络模型,采用一簇Chebyshev正交多项式序列作为其隐层各神经元的激励函数(简称Chebyshev前向神经网络),并为Chebyshev前向神经网络推导基于梯度下降法的网络参数训练算法。仿真实验表明,基于梯度下降法的Chebyshev前向神经网络算法能够有效调整网络参数,使之以较高的精度逼近具有复杂模式的样本数据集。 展开更多
关键词 CHEBYSHEV多项式 神经网络 函数逼近 梯度下降法
下载PDF
关于埃尔米特多项式的一些恒等式 被引量:3
9
作者 王婷婷 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2010年第5期444-446,共3页
研究了埃尔米特多项式的一类和式的计算问题.利用埃尔米特多项式幂级数的生成函数及其可乘法则,通过对比两边幂级数的系数,以及对相关结论乘以系数后进行积分,得到关于埃尔米特多项式的一些恒等式.所得的恒等式简单而有趣,并有一定的推... 研究了埃尔米特多项式的一类和式的计算问题.利用埃尔米特多项式幂级数的生成函数及其可乘法则,通过对比两边幂级数的系数,以及对相关结论乘以系数后进行积分,得到关于埃尔米特多项式的一些恒等式.所得的恒等式简单而有趣,并有一定的推广性. 展开更多
关键词 埃尔米特多项式 幂级数 生成函数 初等方法 正交多项式 恒等式
下载PDF
迭代法中的分形 被引量:1
10
作者 杨松林 《华东船舶工业学院学报》 EI 1999年第2期53-55,共3页
介绍了复平面上Newton迭代函数的Julia集的定义,借助计算机迭代制图及理论方法讨论了复平面上4次复多项式f(z)=z4-1的Newton迭代函数的Julia集及Julia集的分形结构,给出了其Julia集的分形... 介绍了复平面上Newton迭代函数的Julia集的定义,借助计算机迭代制图及理论方法讨论了复平面上4次复多项式f(z)=z4-1的Newton迭代函数的Julia集及Julia集的分形结构,给出了其Julia集的分形图形。最后指出n次复多项式的Newton迭代函数的Julia集具有“链”形的分形结构;一些特殊的复多项式对应的Julia集存在一些不规则点。 展开更多
关键词 迭代法 函数 多项式 分形 牛顿函数
下载PDF
正、余弦函数奇偶次方的积和式 被引量:3
11
作者 杨存典 刘端森 《商洛学院学报》 2007年第2期8-10,共3页
目的利用第一、二类Chebyshev多项式及其性质,解决解析数论中该函数积和的计算问题.方法运用初等数论和解析数论的方法.结果得到了正、余弦函数奇、偶次方的积和式.结论运用正交多项式的性质,可以研究许多特殊函数的积和的计算.
关键词 Chebychev多项式 正弦函数 余弦函数
下载PDF
Sumudu Transformation or What Else Can Laplace Transformation Do
12
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2019年第2期111-142,共32页
The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made ... The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made by an integral transformation which is a modified Laplace transformation and is called Sumudu transformation. It makes the transition from the Exponential series to the Geometric series and may help to evaluate new infinite power series from known Taylor series. The Sumudu transformation is demonstrated to be a limiting case of Fractional integration. Apart from the basic Sumudu integral transformation we discuss a modification where the coefficients ?from the Taylor series are not changed to f(n)(0)?but only to . Beside simple examples our applications are mainly concerned to calculate new Generating functions for Hermite polynomials from the basic ones. 展开更多
关键词 Mellin TRANSFORMATION Fractional Integration Geometric SERIES and Exponential SERIES Error function Laguerre polynomials Generating functionS of Hermite polynomials BESSEL functionS Asymptotic SERIES Operator IDENTITIES
下载PDF
The Exponential Function as Split Infinite Product 被引量:1
13
作者 Pál Doroszlai Horacio Keller 《Advances in Pure Mathematics》 2022年第4期308-331,共24页
It is shown that any polynomial written as an infinite product with all positive real roots may be split in two steps into the product of four infinite polynomials: two with all imaginary and two with all real roots. ... It is shown that any polynomial written as an infinite product with all positive real roots may be split in two steps into the product of four infinite polynomials: two with all imaginary and two with all real roots. Equations between such infinite products define adjoint infinite polynomials with roots on the adjoint roots (real and imaginary). It is shown that the shifting of the coordinates to a parallel line of one of the adjoint axes does not influence the relative placement of the roots: they are shifted to the parallel line. General relations between original and adjoint polynomials are evaluated. These relations are generalized representations of the relations of Euler and Pythagoras in form of infinite polynomial products. They are inherent properties of split polynomial products. If the shifting of the coordinate system corresponds to the shifting of the imaginary axes to the critical line, then the relations of Euler take the form corresponding to their occurrence in the functional equation of the Riemann zeta function: the roots on the imaginary axes are all shifted to the critical line. Since it is known that the gamma and the zeta functions may be written as composed functions with exponential and trigonometric parts, this opens the possibility to prove the placement of the zeta function on the critical line. 展开更多
关键词 Infinite polynomials Shifting to the Critical Line Zeta function
下载PDF
Some Results on Type 2 Degenerate Poly-Fubini Polynomials and Numbers 被引量:3
14
作者 Ghulam Muhiuddin Waseem AKhan +1 位作者 Abdulghani Muhyi Deena Al-Kadi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期1051-1073,共23页
In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some ... In this paper,we introduce type 2 degenerate poly-Fubini polynomials and derive several interesting characteristics and properties.In addition,we define type 2 degenerate unipoly-Fubini polynomials and establish some certain identities.Furthermore,we give some relationships between degenerate unipoly polynomials and special numbers and polynomials.In the last section,certain beautiful zeros and graphical representations of type 2 degenerate poly-Fubini polynomials are shown. 展开更多
关键词 Type 2 degenerate poly-Fubini polynomials modified degenerate polylogarithm function unipoly functions
下载PDF
Resurgence relation and global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach 被引量:1
15
作者 XU ShuaiXia ZHAO YuQiu 《Science China Mathematics》 SCIE 2011年第4期661-679,共19页
A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgenc... A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgence relation within the sequence of Riemann-Hilbert problems is observed in the procedure of derivation.Global asymptotic approximations are obtained in terms of the Airy function.The system of Hermite polynomials is used as an illustration. 展开更多
关键词 Riemann-Hilbert approach resurgence relation uniform asymptotics orthogonal polynomials Hermite polynomials Airy function
原文传递
Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics 被引量:1
16
作者 展德会 范洪义 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期30-33,共4页
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm... We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states. 展开更多
关键词 generating function two-variable Hermite polynomials Hermite polynomial method technique of integral within an ordered product of operators
下载PDF
New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics 被引量:1
17
作者 范洪义 展德会 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期18-22,共5页
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh... By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials. 展开更多
关键词 generating function even- and odd-Hermite polynomials Hermite polynomial method techniqueof integral within an ordered product of operators
下载PDF
Selection of Coherent and Concise Formulae on Bernoulli Polynomials-Numbers-Series and Power Sums-Faulhaber Problems
18
作者 Do Tan Si 《Applied Mathematics》 2022年第10期799-821,共23页
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi... Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums. 展开更多
关键词 Bernoulli Numbers Bernoulli polynomials Powers Sums Zeta function Faulhaber Conjecture
下载PDF
Reconstructing the Potential Function in a Formulation of Quantum Mechanics Based on Orthogonal Polynomials 被引量:1
19
作者 A.D.Alhaidari 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第12期711-728,共18页
In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square int... In a recent reformulation of quantum mechanics, the properties of the physical system are derived from orthogonal polynomials that make up the expansion coefficients of the wavefunction in a complete set of square integrable basis. Here, we show how to reconstruct the potential function so that a correspondence with the standard formulation could be established. However, the correspondence places restriction on the kinematics of such problems. 展开更多
关键词 WAVEfunction potential function orthogonal polynomials recursion relation tridiagonal representations ASYMPTOTICS
原文传递
有关雅可比多项式一些性质的研究 被引量:2
20
作者 孙慧娟 赵小香 《四川理工学院学报(自然科学版)》 CAS 2009年第6期37-41,共5页
雅可比多项式及其特例都是重要的正交多项式,它们在求解数学物理方程中有重要应用。文章总结了雅可比多项式的一些生成函数和递推关系,并给出了相应的证明。这些将有助于进一步研究雅可比多项式及其特例的其它性质,解决数学物理中的一... 雅可比多项式及其特例都是重要的正交多项式,它们在求解数学物理方程中有重要应用。文章总结了雅可比多项式的一些生成函数和递推关系,并给出了相应的证明。这些将有助于进一步研究雅可比多项式及其特例的其它性质,解决数学物理中的一些实际问题。 展开更多
关键词 雅可比多项式 生成函数 超几何级数 递推关系
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部