An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
It is well known that a system of equations of sum of equal powers can be converted to an algebraic equation of higher degree via Newton's identities. This is the Viete-Newton theorem. This work reports the genera...It is well known that a system of equations of sum of equal powers can be converted to an algebraic equation of higher degree via Newton's identities. This is the Viete-Newton theorem. This work reports the generalizations of the Viete-Newton theorem to a system of equations of algebraic sum of equal powers. By exploiting some facts from algebra and combinatorics,it is shown that a system of equations of algebraic sum of equal powers can be converted in a closed form to two algebraic equations, whose degree sum equals the number of unknowns of the system of equations of algebraic sum of equal powers.展开更多
In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-di...In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-dimensional chaotic dynamical systems is generally a difficult problem, Musielak and Musielak, [1]. We numerically illustrate that sometimes elementary approaches can yield the desired numerical results with two different continuous higher order dynamical systems that exhibit chaotic behavior, the Lorenz equations and the Rössler attractor.展开更多
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金This work was supported by the National Natural Science Foundation of China (Grant No.10471128).
文摘It is well known that a system of equations of sum of equal powers can be converted to an algebraic equation of higher degree via Newton's identities. This is the Viete-Newton theorem. This work reports the generalizations of the Viete-Newton theorem to a system of equations of algebraic sum of equal powers. By exploiting some facts from algebra and combinatorics,it is shown that a system of equations of algebraic sum of equal powers can be converted in a closed form to two algebraic equations, whose degree sum equals the number of unknowns of the system of equations of algebraic sum of equal powers.
文摘In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-dimensional chaotic dynamical systems is generally a difficult problem, Musielak and Musielak, [1]. We numerically illustrate that sometimes elementary approaches can yield the desired numerical results with two different continuous higher order dynamical systems that exhibit chaotic behavior, the Lorenz equations and the Rössler attractor.