When polyethylene chains are stretched, the chains are regarded as being confined in an infinite cylinder with decreasing diameter. The conformational properties of polyethylene chains confined in an infinite cylinder...When polyethylene chains are stretched, the chains are regarded as being confined in an infinite cylinder with decreasing diameter. The conformational properties of polyethylene chains confined in an infinite cylinder are investigated by using rotational isomeric state model. Using the average conformational energy and entropy and the average length, we can determine the elastic force f, or the fraction of the energy term to the total force f(e)/f where f(e) = partial derivative /partial derivative < r > and f = partial derivative /partial derivative < r >. Comparisons with experimental data are also made. The results of these microscopic calculations are discussed in terms of the macroscopic phenomena of rubber elasticity.展开更多
The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the res...The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S2)/(Nb2) and the shape factor ((δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity Cv, and the knotted ring chain undergoes gas-liquid-solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains.展开更多
基金This research was financially supported by the National Natural Science Foundation of China and the National Basic Research Project "Macromolecular Condensed State" from STCC
文摘When polyethylene chains are stretched, the chains are regarded as being confined in an infinite cylinder with decreasing diameter. The conformational properties of polyethylene chains confined in an infinite cylinder are investigated by using rotational isomeric state model. Using the average conformational energy and entropy and the average length, we can determine the elastic force f, or the fraction of the energy term to the total force f(e)/f where f(e) = partial derivative /partial derivative < r > and f = partial derivative /partial derivative < r >. Comparisons with experimental data are also made. The results of these microscopic calculations are discussed in terms of the macroscopic phenomena of rubber elasticity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20574052,20774066,20974081,and 20934004)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-05-0538)the Ph.D. Program Foundation of the Ministry of Education of China (Grant No. 20090101110002)
文摘The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S2)/(Nb2) and the shape factor ((δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity Cv, and the knotted ring chain undergoes gas-liquid-solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains.