A dynamic composite model for a soil-water system that can be used to simulate the movement of leachate from a landfill. The composite model includes nine sub-models that trace water movement and the migration and tra...A dynamic composite model for a soil-water system that can be used to simulate the movement of leachate from a landfill. The composite model includes nine sub-models that trace water movement and the migration and transformation of five pollutants(organic N, NH - 4, NO - 3, NO - 2, and Cl -) in saturated and unsaturated soil. The model to simulate the movement of leachate from a landfill in Laogang Town, Shanghai City was used. In this application, the values for the model parameters were obtained by performing a laboratory simulation experiment of water movement and pollutant migration and transformation in soil columns. Soil and leachate obtained from the landfill site and its vicinity were used in the laboratory experiments. The model was then used to simulate leachate movement and pollutant activity during the ten-year period when the landfill was in operation and in the twenty-year period following its closure. The simulation results revealed that the leachate migrated into the groundwater at the rate of 90—100 meters per year. This model can be applied in the design of future landfills in China for the purpose of assessing and forecasting leachate plumes.展开更多
Presently, several activated sludge models (ASMs) have been developed to describe a few biochemical processes. However, the commonly used ASM neither clearly describe the migratory transformation characteristics of fe...Presently, several activated sludge models (ASMs) have been developed to describe a few biochemical processes. However, the commonly used ASM neither clearly describe the migratory transformation characteristics of fermentation nor depict the relationship between the carbon source and biochemical reactions. In addition, these models also do not describe both ammonification and the integrated metabolic processes in sewage transportation. In view of these limitations, we developed a new and comprehensive model that introduces anaerobic fermentation into the ASM and simulates the process of sulfate reduction, ammonification, hydrolysis, acidogenesis and methanogenesis in a gravity sewer. The model correctly predicts the transformation of organics including proteins, lipids, polysaccharides, etc. The simulation results show that the degradation of organics easily generates acetic acid in the sewer system and the high yield of acetic acid is closely linked to methanogenic metabolism. Moreover, propionic acid is the crucial substrate for sulfate reduction and ammonification tends to be affected by the concentration of amino acids. Our model provides a promising tool for simulating and predicting outcomes in response to variations in wastewater quality in sewers.展开更多
文摘A dynamic composite model for a soil-water system that can be used to simulate the movement of leachate from a landfill. The composite model includes nine sub-models that trace water movement and the migration and transformation of five pollutants(organic N, NH - 4, NO - 3, NO - 2, and Cl -) in saturated and unsaturated soil. The model to simulate the movement of leachate from a landfill in Laogang Town, Shanghai City was used. In this application, the values for the model parameters were obtained by performing a laboratory simulation experiment of water movement and pollutant migration and transformation in soil columns. Soil and leachate obtained from the landfill site and its vicinity were used in the laboratory experiments. The model was then used to simulate leachate movement and pollutant activity during the ten-year period when the landfill was in operation and in the twenty-year period following its closure. The simulation results revealed that the leachate migrated into the groundwater at the rate of 90—100 meters per year. This model can be applied in the design of future landfills in China for the purpose of assessing and forecasting leachate plumes.
文摘Presently, several activated sludge models (ASMs) have been developed to describe a few biochemical processes. However, the commonly used ASM neither clearly describe the migratory transformation characteristics of fermentation nor depict the relationship between the carbon source and biochemical reactions. In addition, these models also do not describe both ammonification and the integrated metabolic processes in sewage transportation. In view of these limitations, we developed a new and comprehensive model that introduces anaerobic fermentation into the ASM and simulates the process of sulfate reduction, ammonification, hydrolysis, acidogenesis and methanogenesis in a gravity sewer. The model correctly predicts the transformation of organics including proteins, lipids, polysaccharides, etc. The simulation results show that the degradation of organics easily generates acetic acid in the sewer system and the high yield of acetic acid is closely linked to methanogenic metabolism. Moreover, propionic acid is the crucial substrate for sulfate reduction and ammonification tends to be affected by the concentration of amino acids. Our model provides a promising tool for simulating and predicting outcomes in response to variations in wastewater quality in sewers.