辐射传输模式是建立遥感反演方法和气候模式中辐射参数化的重要工具,尤其是全偏振的矢量辐射传输模式对于精确理解地气系统中的辐射过程至关重要。PolRadtran/RT3(polarized radiative transfer)、SOSVRT(vector radiative transfer bas...辐射传输模式是建立遥感反演方法和气候模式中辐射参数化的重要工具,尤其是全偏振的矢量辐射传输模式对于精确理解地气系统中的辐射过程至关重要。PolRadtran/RT3(polarized radiative transfer)、SOSVRT(vector radiative transfer based on successive order of scattering)和VDISORT(vector DIScrete ordinate radiative transfer)是基于不同物理原理求解矢量辐射传输的三个代表性数值模式。对这三个模式进行计算时间和计算精度的比较,发现,基于逐次散射法的SOSVRT计算效率最高,计算时间基本不随流数的增加而增长,但随单层光学厚度的增大,其计算时间有较为明显的增加,在米散射情况下,光学厚度从0.5增加到1.0时,其计算时间增加了1倍;基于倍加累加法的RT3和基于矩阵特征矢量求解方法的VDISORT计算效率较低,尤其是采用大流数计算时,RT3和VDISORT的计算时间随流数的增加迅速增长,特别是在瑞利散射条件下,波长为400nm,流数为40时,其计算时间分别为SOSVRT的23倍和7倍。但是,两模式随光学厚度增加计算时间却无明显的增加。在计算精度方面,3个模式比较接近,只是VDISORT在大流数的情况下会有震荡现象。展开更多
采用间断有限元法(Discontinuous finite element method,DFEM)求解一维散射性介质内矢量辐射传输问题。推导了散射性介质内矢量辐射传输方程的间断有限元离散格式,空间离散采用间断有限元离散将求解域划分为相互独立的单元,角度离散在...采用间断有限元法(Discontinuous finite element method,DFEM)求解一维散射性介质内矢量辐射传输问题。推导了散射性介质内矢量辐射传输方程的间断有限元离散格式,空间离散采用间断有限元离散将求解域划分为相互独立的单元,角度离散在传统的均匀分段光滑近似(Piecewise Constant Approximation,PCA)角度离散基础上进行局部加密以得到关键方向上的数值解。采用两个稳态矢量辐射传输算例对间断有限元法求解矢量辐射传输方程的正确性和计算效率进行了验证,在此基础上拓展间断有限元法应用于求解散射性介质内瞬态矢量辐射传输方程,将随着时间推移过程中的瞬态辐射信息和最终的稳态结果相比较验证了本文方法的正确性。展开更多
文摘辐射传输模式是建立遥感反演方法和气候模式中辐射参数化的重要工具,尤其是全偏振的矢量辐射传输模式对于精确理解地气系统中的辐射过程至关重要。PolRadtran/RT3(polarized radiative transfer)、SOSVRT(vector radiative transfer based on successive order of scattering)和VDISORT(vector DIScrete ordinate radiative transfer)是基于不同物理原理求解矢量辐射传输的三个代表性数值模式。对这三个模式进行计算时间和计算精度的比较,发现,基于逐次散射法的SOSVRT计算效率最高,计算时间基本不随流数的增加而增长,但随单层光学厚度的增大,其计算时间有较为明显的增加,在米散射情况下,光学厚度从0.5增加到1.0时,其计算时间增加了1倍;基于倍加累加法的RT3和基于矩阵特征矢量求解方法的VDISORT计算效率较低,尤其是采用大流数计算时,RT3和VDISORT的计算时间随流数的增加迅速增长,特别是在瑞利散射条件下,波长为400nm,流数为40时,其计算时间分别为SOSVRT的23倍和7倍。但是,两模式随光学厚度增加计算时间却无明显的增加。在计算精度方面,3个模式比较接近,只是VDISORT在大流数的情况下会有震荡现象。