Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exh...Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in micro- sized all-optical and optoelectronic devices.展开更多
1 m新真空太阳望远镜(New Vacuum Solar Telescope,NVST)的高分辨磁像仪采用了同步重建技术,其中用到了分束镜。分束镜从设计上一般会进行偏振优化,尽量减小偏振效应,但还是不可避免地对太阳磁场的偏振测量造成影响,因此,对分束镜偏振...1 m新真空太阳望远镜(New Vacuum Solar Telescope,NVST)的高分辨磁像仪采用了同步重建技术,其中用到了分束镜。分束镜从设计上一般会进行偏振优化,尽量减小偏振效应,但还是不可避免地对太阳磁场的偏振测量造成影响,因此,对分束镜偏振特性的测量是1 m太阳望远镜进行太阳磁场偏振测量的必需步骤。运用空气Mueller矩阵校准法对Mueller矩阵测量结果进行了校准,测量了两块用于磁场偏振测量的分束镜样品,比较了不同分束镜方案的Mueller矩阵及其对偏振测量的影响,并测量了平板玻璃的Mueller矩阵随入射角变化的结果,比较测量结果与理论值之间的偏差,利用空气Mueller矩阵进行校准后测量系统达到5×10^(-3)的Mueller矩阵测量精度。展开更多
Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishme...Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to the remarkable optical properties of these materials and their prospects for new devices. Herein, we report the anisotropic and thickness- dependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS). Three Raman-scattering peaks corresponding to the B3g,, A1g, and A2g modes with a strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at -1.66 eV that originates from the direct optical transition in GeS at room temperature. The polarization-dependent characteristics of the PL, which are revealed for the first time, along with the demonstration of anisotropic absorption, indicate an obvious anisotropic optical transition near the band edge of GeS, which is supported by density functional theory calculations. The significantly thickness-dependent PL is observed and discussed. This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties, such as polarization-sensitive photodetectors.展开更多
文摘Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in micro- sized all-optical and optoelectronic devices.
文摘Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to the remarkable optical properties of these materials and their prospects for new devices. Herein, we report the anisotropic and thickness- dependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS). Three Raman-scattering peaks corresponding to the B3g,, A1g, and A2g modes with a strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at -1.66 eV that originates from the direct optical transition in GeS at room temperature. The polarization-dependent characteristics of the PL, which are revealed for the first time, along with the demonstration of anisotropic absorption, indicate an obvious anisotropic optical transition near the band edge of GeS, which is supported by density functional theory calculations. The significantly thickness-dependent PL is observed and discussed. This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties, such as polarization-sensitive photodetectors.