Directional couplers (DCs) have been playing an important role as a basic element for realizing power exchange. Previously most work was focused on symmetric DCs and little work was reported for asymmetric direction...Directional couplers (DCs) have been playing an important role as a basic element for realizing power exchange. Previously most work was focused on symmetric DCs and little work was reported for asymmetric directional couplers (ADCs). In recently years, silicon nanophotonie waveguides with ultra-high index contrast and ultra-small cross section have been developed very well and it has been shown that ADCs based on silicon-oninsulator (SOI) nanophotonic waveguides have some unique ability for polarization-selective coupling as well as mode-selective coupling, which are respectively very important for polarization-related systems and mode-division-mulitplexing systems. In this paper, a review is given for the recent progresses on silicon-based ADCs and the applications for power splitting, polarization beam splitting, as well as mode conversion/(de)multiplexing.展开更多
Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inhe...Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .展开更多
基金Acknowledgements We thank Dr. Jian Wang, Dr. Pengxin Chen, Dr. Xiaowei Guan, Dr. Fei Lou, Prof. Lech Wosinski, Dr. Di Liang, Prof. John Bowers, Dr. Yaocheng Shi, Prof. Sailing He, et al for their contributions and the support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 11374263, 6141101056, 61422510), the Doctoral Fund of Ministry of Education of China (No. 20120101110094), and the Fundamental Research Funds for the Central Universities.
文摘Directional couplers (DCs) have been playing an important role as a basic element for realizing power exchange. Previously most work was focused on symmetric DCs and little work was reported for asymmetric directional couplers (ADCs). In recently years, silicon nanophotonie waveguides with ultra-high index contrast and ultra-small cross section have been developed very well and it has been shown that ADCs based on silicon-oninsulator (SOI) nanophotonic waveguides have some unique ability for polarization-selective coupling as well as mode-selective coupling, which are respectively very important for polarization-related systems and mode-division-mulitplexing systems. In this paper, a review is given for the recent progresses on silicon-based ADCs and the applications for power splitting, polarization beam splitting, as well as mode conversion/(de)multiplexing.
文摘Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .