从根分布的角度,对齐性二维球面分类结果给出比Bando和Ohnita(J Math Soc Japan,1987,39:477)更加明显的刻画,求出决定齐性二维球面的SU(2)轨道的李群多项式表示的显式表达式,证明复射影空间中SU(2)轨道的维数取决于一个对应的扩大复平...从根分布的角度,对齐性二维球面分类结果给出比Bando和Ohnita(J Math Soc Japan,1987,39:477)更加明显的刻画,求出决定齐性二维球面的SU(2)轨道的李群多项式表示的显式表达式,证明复射影空间中SU(2)轨道的维数取决于一个对应的扩大复平面系数上的一元n次方程的重根和负共轭倒数根对分布,把SU(2)轨道维数归结为黎曼球面上n个点是否重合或成为对径点的问题.也初步研究了SU(2)三维轨道性质与根分布的关系.展开更多
For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of wh...For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.展开更多
文摘从根分布的角度,对齐性二维球面分类结果给出比Bando和Ohnita(J Math Soc Japan,1987,39:477)更加明显的刻画,求出决定齐性二维球面的SU(2)轨道的李群多项式表示的显式表达式,证明复射影空间中SU(2)轨道的维数取决于一个对应的扩大复平面系数上的一元n次方程的重根和负共轭倒数根对分布,把SU(2)轨道维数归结为黎曼球面上n个点是否重合或成为对径点的问题.也初步研究了SU(2)三维轨道性质与根分布的关系.
基金Supported by the National Natural Science Foundation of China(11561020,11371224)Supported by the Science and Technology Plan of the Gansu Province(145RJZG227)
文摘For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.